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Distinct count is a very common calculation in any SSAS database—there is a good chance that you already 
know the DISTINCTCOUNT function, which exists for this purpose. DISTINCTCOUNT provides good 
performance in many cases, but there are scenarios where using other patterns to compute distinct count 
will provide better performance. The speed improvement can be impressive, although, as you might expect, 
you will need to perform some tests before choosing the best technique for your model. 

In this article, I will explore different methods to perform distinct count and, by following the DAX query 
plans, understand the differences in how the VertiPaq engine (yes, I know it is named “xVelocity-InMemory-
Engine,” but I love to call it VertiPaq) resolves the query. Thus, get prepared for a geeky dive in the DAX query 
engine internals. 

For the tests, I used a data model with a fact table containing 4 billion rows and one dimension (customers) 
with 152,275 rows. The dimension is a slowly changing dimension of type 2, so that multiple records exist for 
the same customer. I cannot share the database because it contains customer data, but you should be able 
to reproduce similar results on your database. 

I have executed all of the tests with a cold cache, because most of the queries use only SE—they will be 
completely cached, and running them with a hot cache would not provide useful information. 

As you will learn by reading this white paper, different patterns provide different performance but, in order 
to obtain the best performance, you need to work at the query level and write the query in such a way that 
the VertiPaq engine follows the best execution path. Unfortunately, you do not always have full control over 
the queries and, in this case, you will need to make decisions based on the expected usage of the measures 
in your database. 

IMPORTANT: Please note that the goal of this paper is to understand the different query plans and operations 
performance by the query engine. This is not an ultimate guide to distinct count optimization. The 
performance of distinct count calculations is affected by many other factors, such as the number of distinct 
values in the column and in the result set. Your mileage may vary a lot, so test everything in your specific 
data model. At the end of the paper, we provide a comparison between the same set of queries on two 
different databases in order to give you an idea of how important testing is. 

 

 



 

 

Before trying more complex queries, it is useful to spend some time looking at the query plans of different 
formulations of distinct count. Later we will work on queries that more authentically reflect real-world 
scenarios. 

The first measure I tested is the naïve one: 

EVALUATE  
    ROW ( "Result", DISTINCTCOUNT ( Fact[CustomerKey] ) ) 

This query runs in 1,482 milliseconds on my workstation. Looking at the query plan, you see this result: 

 

The interesting parts of this query plan are: 

 It is resolved by VertiPaq scans, so it makes very good use of hardware: 17,141 milliseconds of CPU 
time results in a duration of 1,476 milliseconds due to the high level of parallelism in VertiPaq. 

 Formula Engine (FE) time is negligible, and this is very good. 

 The original VertiPaq query is: 

SELECT  
    DCOUNT ( Fact.CustomerKey ) 
FROM Fact; 

And there are two internal scans: 



 

 

SELECT  
    Fact.CustomerKey 
FROM Fact 
 
 
SELECT COUNT () FROM $DCOUNT_DATACACHE 

DAX computes the distinct count by first running a query to perform a GROUPBY on the fact table for the 
CustomerKey and then retrieving the number of rows in that dataset. This is why you see a single VertiPaq 
scan even though it is resolved by different internal VertiPaq scans (one for the GROUPBY and one for the 
COUNT of the resulting set). 

You can use the SUMMARIZE function to compute the same measure, performing—with a more complex 
DAX expression—the same operations carried on by the optimizer when it evaluates the DISTINCTCOUNT 
function: 

EVALUATE 
    ROW ( "Result", COUNTROWS ( SUMMARIZE ( Fact, Fact[CustomerKey] ) ) ) 

Although this query looks more complex, the result is impressive: it runs in 806 milliseconds (compared with 
the 1,482 of the previous measure). The query plan is simpler this time: 

 

The VertiPaq scan executes this query: 

SELECT  
    Fact.CustomerKey 
FROM Fact 

But this time, the query runs for 780 milliseconds, using only 9,125 milliseconds of CPU time. The result of 
the VertiPaq scan is then aggregated in FE using a simple COUNT, and it is very fast. 

When I test this pattern for different columns in the fact table, the execution time strongly depends on the 
number of distinct values of the column counted, but the SUMMARIZE pattern always results in better 
performance. Of course, the pattern of the query plan is always the same. 



 

 

There is another pattern for distinct count that some customers report as a better alternative to the use of 
the DISTINCTCOUNT function. Instead of using a counting function (COUNTROWS or DISTINCTCOUNT), you 
use an iteration: SUMX with a constant value of 1. 

EVALUATE  
    ROW ( "Result", SUMX ( VALUES ( Fact[CustomerKey] ), 1 ) ) 

The query plan of this query is very simple, resulting in performance that is identical to the SUMMARIZE 
version. In fact, the algorithm used by DAX for SUMX is very similar to the SUMMARIZE pattern but, this time, 
FE uses a SUM with a constant instead of a COUNT to aggregate the result of the VertiPaq scan. 

 

The VertiPaq scan is the same as that for the SUMMARIZE pattern: 

SELECT  
    Fact.CustomerKey 
FROM Fact 

Thus, for the base measure, there seem to be no difference between the usage of SUMMARIZE and SUMX: 
both result in better performance when compared with DISTINCTCOUNT. 

As I said at the beginning, the customer dimension is a slowly changing dimension (SCD). Thus, we cannot 
compute the number of distinct customers with any of the previous formulas. In fact, what we have counted 
is the number of surrogate keys (CustomerKey), while we should have counted the number of customers’ 
codes. The number of codes is always smaller than the number of keys for a type 2 SCD. 

To compute the distinct count of codes, we can use the many-to-many pattern. In fact, in a dimensional 
model, you can think of the fact table as a bridge table between any two dimensions, and you can use the 
many-to-many pattern to find relationships between dimensions. In this case, we only have a single 
dimension to analyze, but we will compute the number of codes in the dimension after having filtered it with 
the fact table as if it was a bridge. 

Let us start with the simple DISTINCTCOUNT: 



 

 

EVALUATE 
    ROW ( 
        "Result", 
        CALCULATE ( DISTINCTCOUNT ( Customers[CustomerCode] ), Fact ) 
    ) 

The results are surprising. This query runs in 1,090 milliseconds (yes, faster than the distinct count of the 
customer key—isn’t it unbelievable?). Let us take a look at the query plan: 

 

The first VertiPaq query computes the customer keys from the customers table reached using a JOIN from 
the fact table, and it is responsible for the majority of the query duration: 

SELECT 
    Customers.CustomerKey,  
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

It is important to note that, although the column for which we requested a distinct count is the customer 
code, this query gathers the surrogate keys from the fact table. The remaining three VertiPaq queries follow 
the DISTINCTCOUNT pattern (retrieval of customer code and then computation of the count from the 
$DCOUNT_DATACACHE) and their execution time is negligible. It is worth looking at the first of these queries: 

SELECT 
    Customers.CustomerCode 
FROM  
    Customers 
WHERE 
 Customers.CustomerKey IN (17547, 28294, 115157, 56591, 132707, ... 
                          [144631 total values, not all displayed]) 

The query scans the customers table using a bitmap built in the previous VertiPaq query that shows which 
CustomerKeys should be part of the query. Do not be impressed by the textual representation of the query: 
the filter CustomerKey IN (...) seems to be very inefficient (and it would be, in SQL) but it is only intended to 
be human-readable. In reality, it is a simple bitmap scan of a small table and, in fact, it runs very quickly. 



 

 

Thus, DAX followed a simple algorithm to compute the distinct count: it built a bitmap of customer keys and 
then used that bitmap to scan the dimension and compute the distinct count on the smaller table. The 
resulting execution time is very good. 

 At this point, a careful reader should note that, because this algorithm is faster than the 
one we used to compute distinct count without SCD handling, a good query to test would 
have been: 
    EVALUATE 
        ROW ( 
            "Result", 
            CALCULATE ( DISTINCTCOUNT  ( Customers[CustomerKey] ), Fact ) 
        ) 
In fact, it turns out that this query computes the very same result as the basic 
DISTINCTCOUNT but it is faster, running in 1,097 milliseconds instead of the original 
1,482. 

It is worth noting that, in this case, the DISTINCTCOUNT function performed a different algorithm, so it might 
be the case that expressing the query with the SUMMARIZE pattern will not result in the same boost in 
performance we have previously seen. We tried this query: 

EVALUATE 
    ROW ( 
        "Result", 
        COUNTROWS ( SUMMARIZE ( Fact, Customers[CustomerCode] ) ) 
    ) 

In fact, this time the query runs in 2,160 milliseconds. The query plan shows what happened: 

 

All of the time is used by a single VertiPaq query, which contains the exact algorithm expressed by our DAX 
query: 

SELECT 
    Customers.CustomerCode, COUNT() 
FROM  
    Fact 
LEFT OUTER JOIN Customers  
    ON Customers.CustomerKey = Fact.CustomerKey 

Surprisingly, this time the JOIN is executed inside VertiPaq with a pattern very similar to the one used in the 
previous query, but it takes twice the time. You can see that the VertiPaq query does not retrieve the 
CustomerKey but instead directly retrieves the CustomerCode. 



 

 

It turns out that, this time, the SUMMARIZE version performs worse than the DISTINCTCOUNT one. It seems 
strange that a JOIN performed in VertiPaq results in slower performance than a bitmap scan following a 
query. Thus, we must test a different query. This time, instead of computing the distinct count of the 
customer code (which has the same cardinality of the customer key), we will compute the distinct count of 
the customer age range, which has a much lower cardinality (there are only 9 age ranges of customers, 
compared with 150,000 customer codes). 

The DISTINCTCOUNT query is the following; others follow a similar pattern: 

EVALUATE 
    ROW ( 
        "Result", 
        CALCULATE ( DISTINCTCOUNT ( Customers[AgeRange] ), Fact ) 
    ) 

Suppose we replace CustomerCode with AgeRange in all of the previous queries. It turns out that, with a 
lower cardinality attribute, the SUMMARIZE version is faster than the DISTINCTCOUNT one. In fact, the 
SUMMARIZE version runs in 639 milliseconds while the DISTINCTCOUNT one uses 1,069 milliseconds. The 
query plans are the same as before, the only difference being in the column retrieved and in timing. 

 It is interesting to note that the DISTINCTCOUNT version of the algorithm uses the same 
time to compute the distinct count on attributes of different cardinality, while the 
SUMMARIZE pattern performs better with lower cardinality and worse with higher 
cardinality. Because you normally can predict the cardinality of an attribute, it might be 
useful to adopt different patterns for different measures. 
Finally, what “cardinality” means really depends on your scenario. The number of rows in 
the fact table and the number of distinct values for dimensions interact in such a complex 
way that testing is always necessary in order to take an educated guess about which 
pattern to use. 



 

 

Exploring how the base measures work is useful to understand the different ways in which DAX solves the 
different formulas, and to grasp a first understanding of the patterns. Of course, testing the base measure 
only evaluates the time required to compute a single cell. We now want to use the different patterns in more 
complex queries in order to check the overall performance of a query. 

It is important to note that when you work with a complex query, the shape of the query plan changes 
depending on both the base measure and the DAX query. Thus, your specific scenario results likely will be 
different from the ones I show in this paper. 

We will test the different formulations of DISTINCTCOUNT in various scenarios: 

 SUMMARIZE on a single column from the same table 

SUMMARIZE ( 
    Fact, 
    Customers[AgeRange], 
    "Result", <ExpressionToCompute> 
) 

 SUMMARIZE on a single column from a different table 

SUMMARIZE ( 
    Fact, 
    'Date'[MonthName], 
    "Result", <ExpressionToCompute> 
) 

 SUMMARIZE on multiple columns from different tables 

SUMMARIZE ( 
    Fact, 
    'Date'[MonthName], 
    Time[Period60Minutes], 
    "Result", <ExpressionToCompute> 
) 

Let us start investigating on performance, computing the customer count and performing a GROUPBY with a 
column in the Customers table.  

Although very simple, this query is interesting to analyze: 



 

 

SUMMARIZE ( 
    Fact, 
    Customers[AgeRange], 
    "Result", DISTINCTCOUNT ( Fact[CustomerKey] ) 
) 

Please note that we are aggregating on the AgeRange column from the Customers table but the 
DISTINCTCOUNT is—in reality—working on the CustomerKey column from the fact table. It is worth noting 
this because in a real-world database you might end up writing base measures for the NumOfCustomers 
using a DISTINCTCOUNT on the fact table and then simply forget that, when aggregating values, you need to 
work on different tables. As we will see, this query can be greatly optimized by writing the measure in a 
different way. Anyway, let us start with this query plan: 

 

The full execution time is 2,673 milliseconds, all spent in SE on two VertiPaq queries. The first one uses the 
DISTINCTCOUNT pattern of a first SELECT followed by the usage of $DCOUNT_DATACACHE: 

SELECT 
    Customers.AgeRange,  
    Fact.CustomerKey, 
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

This query, by itself, already returns the final result and runs in 2,023 milliseconds. Yet DAX needs to 
aggregate by Customers[AgeRange] and, thus, it runs a second query to get the values of 
Customers[AgeRange] from the same fact table. This is the second query, running for 628 milliseconds: 

SELECT 
    Customers.AgeRange,  
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

Finally, FE makes a JOIN between the two results, producing the final dataset.  



 

 

A standard optimization technique in DAX is to replace the SUMMARIZE with ADDCOLUMNS. If we do that 
now, the DAX query becomes: 

ADDCOLUMNS ( 
    VALUES ( Customers[AgeRange] ), 
    "Result", CALCULATE ( DISTINCTCOUNT ( Fact[CustomerKey] ) ) 
) 

We needed to add CALCULATE to force a context transition, and the query plan becomes: 

 

You can easily see that the second VertiPaq query changed from 628 milliseconds to zero. The reason is that, 
this time, DAX did not need to scan the fact table to get the values of Customer[AgeRange]—instead, it used 
the dimension, which is much smaller. Thus, the execution time is much better than before. 

If you are concerned about blank results, which might appear in the result set because the AgeRange values 
come from the Customer table instead of the fact table, you can change the query to: 

FILTER ( 
    ADDCOLUMNS ( 
        VALUES ( Customers[AgeRange] ), 
        "Result", CALCULATE ( DISTINCTCOUNT ( Fact[CustomerKey] ) ) 
    ), 
    NOT ( ISBLANK ( [Result] ) ) 
) 

Because the result set contains few columns, the FILTER operation—although executed in FE—is very fast. In 
fact, this final query returns the same result as the first one, but it is 25% faster. 

Let us perform the same tests we did before but, this time, using the SUMMARIZE version of distinct counts: 

SUMMARIZE ( 
    Fact, 
    Customers[AgeRange], 
    "Result", COUNTROWS ( SUMMARIZE ( Fact, Fact[CustomerKey] ) ) 
) 



 

 

Again, we are summarizing using the AgeRange in Customers and counting values from the fact table. We 
can expect performance similar to the original query using DISTINCTCOUNT. In fact, the query plan looks 
similar to our first test: 

 

The queries are identical to the ones used with DISTINCTCOUNT but, this time, there is no 
$DCOUNT_DATACACHE involved in the calculation. In fact, the first query returns the fact table grouped by 
AgeRange and CustomerKey. 

SELECT 
    Customers.AgeRange,  
    Fact.CustomerKey, 
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

The second one returns the AgeRange values from the fact table: 

SELECT 
    Customers.AgeRange,  
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

And the FE joins the two results using the AgeRange column, grouping by COUNT on the CustomerKey. It is 
worth noting that, although there are 144,631 rows in the result of the first query, the full join takes only 78 
milliseconds. As a result, this query is already faster than the DISTINCTCOUNT one. 

The same considerations we followed for the DISTINCTCOUNT apply here. We are using SUMMARIZE on the 
fact table while we could have optimized the code using ADDCOLUMNS, to remove 625 milliseconds from 
the execution time: 

ADDCOLUMNS ( 
    VALUES ( Customers[AgeRange] ), 
    "Result", CALCULATE ( COUNTROWS ( SUMMARIZE ( Fact, Fact[CustomerKey] ) ) ) 
) 



 

 

As expected, the query plan shows an interesting decrease in execution time because the second VertiPaq 
query no longer takes 625 milliseconds but goes down to a beautiful zero: 

 

Still, we strive for perfection, and we can add one more consideration to this query: can we help VertiPaq 
reduce the scans? We can, if we apply a different algorithm: 

 First, we filter the Customers table to make it contain only rows that are referenced in the fact table, 
using the many-to-many pattern. 

 Second, we do a GROUPBY on the Customers table, counting the customer keys that are present in 
the table after the first filter, and grouping by AgeRange. 

The good part of this plan is that most of the calculation happens on the Customers table. In this way, we 
reduce the usage of the fact table to the building of a filter that needs to be applied to the Customers table 
before starting the computation. 

This is the DAX query: 

CALCULATETABLE ( 
    ADDCOLUMNS ( 
        VALUES ( Customers[AgeRange] ), 
        "Result", CALCULATE ( COUNTROWS ( VALUES ( Customers[CustomerKey] ) ) ) 
    ), 
    Fact 
) 

And this is the query plan: 



 

 

 

The execution time is 1,089 milliseconds. By looking at the queries, you will get a clear feeling of what is 
happening under the cover. There are three VertiPaq queries.  

The first one retrieves the keys of customers starting from the fact table in JOIN with the Customers table. 

SELECT 
    Customers.CustomerKey,  
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

The second query computes the different age ranges and, this time, does not need to scan the fact table. It 
already knows which customers to query, thanks to the previous result, which built a bitmap to apply to the 
Customers table to show only the customers who are present in the fact table: 

SELECT 
    Customers.AgeRange,  
    COUNT() 
FROM  
    Customers 
 WHERE Customers.CustomerKey IN (17547, 28294, 115157, 56591, 132707, 143454, 26322, ... 
                                 [144631 total values, not all displayed]) 

The third query computes the final result, returning the count of customers after having applied a filter on 
both AgeRange and CustomerKey: 

SELECT 
    Customers.AgeRange,  
    COUNT() 
FROM  
    Customers 
 WHERE Customers.CustomerKey INB (17547, 28294, 115157, 56591, 132707, 143454, ... 
                                 [144631 total values, not all displayed]) AND 
       Customers.AgeRange INB ('0-10', '10-20', ...) 

This last query seems like a repetition. In fact, the FE will simply join these two queries, taking the age ranges 
from the first one and the count from the second one, in order to build the final dataset. 



 

 

It is useful to note that, in this case, the SUMMARIZE version outperforms DISTINCTCOUNT, running twice as 
fast. We had to rewrite the query to take advantage of the fact that we are doing a SUMMARIZE on the same 
table. The result is worth the effort, but it cannot be easily achieved working on the measure alone—you 
need to work on the query as a whole to obtain best performance. 

You can achieve similar results using DISTINCTOUNT but, in this case, you need to perform the 
DISTINCTCOUNT on the CustomerKey on the Customers table and not on the fact table. 

CALCULATETABLE ( 
    ADDCOLUMNS ( 
        VALUES ( Customers[AgeRange] ), 
        "Result", CALCULATE ( DISTINCTCOUNT ( Customers[CustomerKey] ) ) 
    ), 
    Fact 
) 

The SUMX version of the pattern yields the same results as the SUMMARIZE version, as might be expected: 

CALCULATETABLE ( 
    ADDCOLUMNS ( 
        VALUES ( Customers[AgeRange] ), 
        "Result", CALCULATE ( SUMX ( VALUES ( Customers[CustomerKey] ), 1 ) ) 
    ), 
    Fact 
) 

 

This query is interesting to look at. The reason is that it is a very common pattern you are likely to encounter 
if you do not spend time optimizing your queries, and the performance is horrible. 

SUMMARIZE ( 
    Fact, 
    Customers[AgeRange], 
    "Result", CALCULATE ( DISTINCTCOUNT ( Customer[CustomerCode] ), Fact ) 
) 

It is very likely that you wrote the DISTINCTCOUNT as a measure and then you used it in a query, without 
worrying about the performance or, worse, taking for granted that performance cannot be further optimized. 
In fact, remember that the DISTINCTCOUNT pattern was our top performer for the handling of slowly 
changing dimensions, when evaluated as a single measure. 

Look at the query plan: 



 

 

 

What happened here? Well, this time the query plan is somewhat naïve. The first VertiPaq query returns, as 
usual, AgeRange and CustomerKey by scanning the fact table but, this time, returns values from the Customer 
table only. If you carefully look at the queries executed for the previous tests, you will notice that the 
customer key is taken from the fact table, not from the Customer table. 

SELECT 
    Customers.AgeRange,  
    Customers.CustomerKey, 
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 



 

 

Following this long-running query, there is a set of scans that all take the following form: 

SELECT 
    Customers.CustomerCode,  
    COUNT() 
FROM  
    Customers 
    WHERE Customers.CustomerKey INB (17547, 28294, 115157, 56591, 132707, 143454, 84888, 
26322, ... 
                                    [144631 total values, not all displayed]) VAND 
    WHERE Customers.CustomerKey INB (5, 6, 10, 90, ... 
                                    [20083 total values, not all displayed]) 

All of these scans are fast but, as you might expect, increasing the number of distinct values in the AgeRange 
column will affect the query performance, increasing the number of queries. 

This time, the engine is really iterating over the different AgeRange values. For each one, it executes a 
separate VertiPaq query to grab the value of that specific range. FE is making much more work, because it 
needs to coordinate the results coming from different VertiPaq queries. The final time of 3,842 milliseconds 
is very high. 

Optimizing this query by using ADDCOLUMNS instead of SUMMARIZE dramatically changes the result: 

ADDCOLUMNS ( 
    VALUES ( Customers[AgeRange] ), 
    "Result", CALCULATE ( DISTINCTCOUNT ( Customer[CustomerCode] ), Fact ) 
) 

In fact, the query plan is very different: 

 

There is no need, at this point, to perform a full analysis of the query plan. The pattern used by the optimizer 
is the same used for the last optimization of the previous section. This time, instead of computing the 
DISTINCTCOUNT of the CustomerKey, we used the DISTINCTCOUNT of the CustomerCode. DAX used the 
pattern of identifying the CustomerKeys present in the fact table and later used that set to filter the 
customers and perform the DISTINCTCOUNT on the Customer table. From this wonderful algorithm follows 
the timing of only 1,084 milliseconds. 



 

 

Let us look at what happens if we try the naïve version of the query but, this time, with the SUMMARIZE 
version of SCD handling: 

SUMMARIZE ( 
    Fact, 
    Customers[AgeRange], 
    "Result", COUNTROWS ( SUMMARIZE ( Fact, Customer[CustomerCode] ) ) 
) 

The query plan is the following: 

 

The initial query, using 2,742 milliseconds, is very similar to the DISTINCTCOUNT version of the same query 
but, this time, it grabs the CustomerCode and not the CustomerKey: 

SELECT 
    Customers.AgeRange,  
    Customers.CustomerCode, 
    COUNT() 
FROM  
    Fact 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

The second query gathers the AgeRanges from the fact table and FE performs the final join. The duration is 
too long, at 3,400 milliseconds, but you already know how to optimize it by using ADDCOLUMNS to avoid the 
additional scan of the fact table: 

ADDCOLUMNS ( 
    VALUES ( Customers[AgeRange] ), 
    "Result", CALCULATE ( COUNTROWS ( SUMMARIZE ( Fact, Customer[CustomerCode] ) ) ) 
) 

Here is the query plan: 



 

 

 

The initial query is identical to the previous one; the missing scan of the fact table (second scan is on the 
Customers table) makes the difference in duration. Still, it is slower than the DISTINCTCOUNT version. In 
reality, the DISTINCTCOUNT version became faster when we optimized the full query and, at the end, it had 
a shape very similar to the current one. 

If you write the query in its best shape, it becomes: 

ADDCOLUMNS ( 
    VALUES ( Customers[AgeRange] ), 
    "Result", CALCULATE (  
        COUNTROWS ( SUMMARIZE ( Customers, Customer[CustomerCode] ) ) ), 
        Fact 
    ) 
) 

Again, by forcing DAX to work on the Customers table, we can obtain top performance. This query runs at 
the same speed as the best DISTINCTCOUNT query (near 1 second). 

Using SUMMARIZE on columns in another table is a common usage of distinct counts. In fact, it is often the 
case that you have many dimensions and you want to produce the distinct count of customers by date, 
product model, or another dimension column. 

In this test we focus on a simple scenario, where we use a single column from a different table. In the next 
example, we will look at improving performance in the more general case where we have many columns 
from many tables. 

I will not spend much time explaining the query plans in detail, because the basic patterns are similar to 
queries we have already seen. In fact, if you do not force the engine to work with only the dimension, it 
always uses the fact table to gather values. 

This is evident from these two queries: 



 

 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    "Result", DISTINCTCOUNT ( Fact[CustomerKey] ) 
) 

And 

ADDCOLUMNS ( 
    VALUES ( Calendar[MonthName] ), 
    "Result", CALCULATE ( DISTINCTCOUNT ( Fact[CustomerKey] ) ) 
) 

They produce identical query plans, following the pattern of running a first query that retrieves MonthName 
and CustomerKey, using $DCOUNT_DATACACHE to grab the distinct counts grouped by MonthName, and 
finally performing a JOIN of that result with the different month names from inside FE.  

In the next figure, you can see the two queries executed one after the other. The single VertiPaq queries are 
identical, and the durations are only a few milliseconds apart. 

 

Thus, when working with columns from different tables, it seems that there is no option of using 
ADDCOLUMNS instead of SUMMARIZE to obtain better performance. This is somewhat expected—there is 
no way to resolve the distinct count using only a table. 

The DISTINCTCOUNT pattern is hard to optimize, but the SUMMARIZE version is even harder. For example, 
in a naïve query like the following one: 



 

 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    "Result", COUNTROWS ( SUMMARIZE ( Fact, Fact[CustomerKey] ) ) 
) 

 The query plan is very simple, yet very slow: 

 

It takes 6,127 milliseconds to run the query. Moreover, 922 milliseconds are spent in the FE. Let us investigate 
on this query plan in order to understand what is happening. The heaviest SE query is the following one: 

SELECT 
    Calendar.MonthName, 
    Fact.CustomerKey 
FROM  
    Calendar 
 LEFT OUTER JOIN Fact 
        ON Fact.CalendarKey = Calendar.CalendarKey 

It returns, from the fact table, the name of the month and the customer keys. The second VertiPaq query 
computes the month names from the calendar table in a join with the fact table. Finally, FE performs the 
aggregation of the result of the first query by using COUNT, to compute the distinct values. 

You can optimize the query by removing the 156 milliseconds from the second VertiPaq query by means of 
using ADDCOLUMNS: 

ADDCOLUMNS ( 
    VALUES ( Calendar[MonthName] ), 
    "Result", CALCULATE ( SUMMARIZE ( Fact, Fact[CustomerKey] ) ) 
) 

The query plan shows that the second VertiPaq query is now much faster: 



 

 

 

However, those few milliseconds removed from the overall query plan do not make a substantial difference—
the query is still very slow. 

In this scenario, DISTINCTCOUNT is a clear winner: SUMMARIZE is not able to produce the same effect and, 
worse, it makes a heavy usage of FE, reducing both parallelism and cache options. 

Let us move on the more complex handling of SCD with both SUMMARIZE and DISTINCTCOUNT. We start 
with this query: 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    "Result", CALCULATE ( DISTINCTCOUNT ( Customer[CustomerCode] ), Fact ) 
) 

The query plan is somewhat long this time: 



 

 

 

Do you recognize the pattern? Iteration is happening. DAX is retrieving the CustomerKey and the 
MonthName from the first query. Then, for each set of CustomerKeys, it is computing the DISTINCTCOUNT 
from the customer table using the canonical pattern of $DCOUNT_DATACACHE, which is evident in the figure 
from the fact that there are three internal scans for each VertiPaq scan. 

The execution time of 8,829 milliseconds is very high but, again, there is no easy way to force the distinct 
count to work on a single table because, this time, the fact table is a bridge and needs to be taken into 
account in a proper way. 

Moreover, FE uses 2,375 milliseconds to perform its internal calculations, and we know this time will never 
be cached. 

Let us take a look at the SUMMARIZE version now: 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    "Result", COUNTROWS ( SUMMARIZE ( Fact, Customer[CustomerCode] ) ) 
) 

The query plan is much shorter, as no iteration is happening: 



 

 

 

Interestingly, it took only 3,977 milliseconds, with 375 milliseconds of FE time. The first, and longest, query 
is the following: 

SELECT 
    Calendar.MonthName, 
    Customers.CustomerCode 
FROM  
    Fact 
    LEFT OUTER JOIN Calendar 
        ON Fact.CalendarKey = Calendar.CalendarKey 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

Can you see the big difference? Here, with a single VertiPaq query, the engine gathered the customer code 
and the month name from the fact table with a couple of joins to the dimensions. After that, computing the 
distinct count is only a matter of aggregating this result, which is the task performed by the FE in those 375 
milliseconds. 

Moreover, at this point we know that those 36 milliseconds of the second query are spent grabbing the 
month names from the fact table, and we can avoid them by forcing that scan to work on the dimension: 

ADDCOLUMNS ( 
    VALUES ( Calendar[MonthName] ), 
    "Result", CALCULATE ( COUNTROWS ( SUMMARIZE ( Fact, Customer[CustomerCode] ) ) ) 
) 

The query plan of this last query shows the result: 

 

Now the second VertiPaq query time is gone because, this time, it is scanning the dimension and not the fact 
table. Not that we saved a huge amount of time but, still, it is better than nothing. 



 

 

As we have already seen many times, DISTINCTCOUNT and SUMMARIZE perform very differently in different 
scenarios. In this one, where we have SCD handling with aggregation on a different table, the SUMMARIZE 
version runs twice as fast as DISTINCTCOUNT. 

Having read this far, you may already know what we will find using SUMMARIZE on columns from many 
tables. This pattern is similar to the previous one because, as we have seen, it is not easy to optimize the 
computation if the columns we use for the aggregation do not come from the table we use to compute the 
distinct count. 

Nonetheless, we will try to optimize the queries when we aggregate from both columns coming from 
different tables and from columns belonging to the same table used to compute the distinct count. 

The basic query pattern is the following: 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    Customers[AgeRange], 
    "Result", DISTINCTCOUNT ( Fact[CustomerKey] ) 
) 

This time, we use one column from the Calendar table and one from the Customer table, aggregating the 
customer key from the fact table. Here is the query plan: 

 

The whole query took 3,875 milliseconds, and the pattern should look familiar now. The first query returns 
month name, age range, and customer key from the fact table with a couple of joins: 



 

 

SELECT 
    Calendar.MonthName, 
    Customers.AgeRange, 
    Fact.CustomerKey 
FROM  
    Fact 
    LEFT OUTER JOIN Calendar 
        ON Fact.CalendarKey = Calendar.CalendarKey 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

Then, it uses the $DCOUNT_DATACACHE to compute the distinct count. The second query retrieves the 
month name and age range from the fact table. Finally, FE performs the join between these two datasets to 
produce the result. 

We can optimize it by forcing at least the second scan on the dimensions instead of using the fact table: 

ADDCOLUMNS ( 
    CROSSJOIN ( 
        VALUES ( Calendar[MonthName] ), 
        VALUES ( Customers[AgeRange] ) 
    ), 
    "Result", CALCULATE ( DISTINCTCOUNT ( Fact[CustomerKey] ) ) 
) 

And the query plan clearly shows the improvement: 

 

The first query is identical to the previous test but, this time, we removed 863 milliseconds that were 
necessary to scan the fact table searching for valid pairs of month name and age range. Of course, this latter 
query returns combinations that might not be needed, but a simple FILTER will remove them from the 
resulting set without affecting performance. 

It is interesting to note that the CROSSJOIN is computed by separately scanning the two dimensions to gather 
column values. These two results are then CROSSJOINED, and the resulting set is joined with the result of the 
fact table scan. 

 By using the ADDCOLUMNS / CROSSJOIN pattern, you might end up computing values for 
a large number of combinations that do not exist. As always, optimizing means 



 

 

performing tests to find the best combination of techniques that provide the top 
performance. 

How does the SUMMARIZE version perform in this scenario? Let us start with the naïve query: 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    Customers[AgeRange], 
    "Result", COUNTROWS ( SUMMARIZE ( Fact, Fact[CustomerKey] ) ) 
) 

The query plan shows that performance is not so good: 

 

The first VertiPaq query gathers the usual columns from the fact table: 

SELECT 
    Calendar.MonthName, 
    Customers.AgeRange, 
    Fact.CustomerKey 
FROM  
    Fact 
    LEFT OUTER JOIN Calendar 
        ON Fact.CalendarKey = Calendar.CalendarKey 
    LEFT OUTER JOIN Customers  
        ON Customers.CustomerKey = Fact.CustomerKey 

Yet this time, the query is taking a lot more time to grab the values. The query is identical to the one produced 
for the DISTINCTCOUNT calculation but, now, because of several optimizations that happen inside the engine 
for the DISTINCTCOUNT calculation, it turns out to be much slower than the DISTINCTCOUNT version. 
Explaining in deeper detail would lead us outside of the focus of this paper. 

As shown previously, we can improve performance by removing the scan on the fact table: 



 

 

ADDCOLUMNS ( 
    CROSSJOIN ( 
        VALUES ( Calendar[MonthName] ), 
        VALUES ( Customers[AgeRange] ) 
    ), 
    "Result", CALCULATE ( COUNTROWS ( SUMMARIZE ( Fact, Fact[CustomerKey] ) ) ) 
) 

The query plan shows the improvement, removing the milliseconds used to scan the fact table for month 
names and age ranges: 

 

 

It is now time to add SCD handling to our distinct count summarized on many columns. Let us start with the 
basic pattern for DISTINCTCOUNT: 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    Customers[AgeRange], 
    "Result", CALCULATE ( DISTINCTCOUNT ( Customers[CustomerCode] ), Fact ) 
) 

This query generates a crazy query plan: 



 

 

 

It iterates for each couple of values with very fast VertiPaq queries, but there are a lot of them and, finally, it 
uses 7,969 milliseconds of FE to perform the final join. The overall execution time of 21,987 milliseconds is 
huge. The pattern is the same as the DISTINCTOUNT on SUMMARIZE we have seen before, but this time the 
number of queries is much higher. Using ADDCOLUMNS instead of SUMMARIZE, in this scenario, does not 
change the plan significantly:  

ADDCOLUMNS ( 
    CROSSJOIN ( 
        VALUES ( Calendar[MonthName] ), 
        VALUES ( Customers[AgeRange] ) 
    ), 
    "Result",  
        CALCULATE (  
            DISTINCTCOUNT ( Customers[CustomerCode] ), 
            CALCULATETABLE ( Fact ) 
        ) 
) 

So using the DISTINCTCOUNT over SCD does not look a good idea. But if we try the SUMMARIZE pattern for 
SCD handling on many columns, as shown below: 

SUMMARIZE ( 
    Fact, 
    Calendar[MonthName], 
    Customers[AgeRange], 
    "Result", COUNTROWS ( SUMMARIZE ( Customers, Customers[CustomerCode] ) ) 
) 



 

 

The result is a much more appealing query plan: 

 

There is nothing new here: the usual scan of the fact table to grab values following the joins in VertiPaq, then 
a second scan to get the values of month name and age range, again on the fact table, and finally a small 
amount of time spent in FE to perform the join. 

As has often happened in this white paper, the ADDCOLUMNS version of the SUMMARIZE pattern looks even 
better: 

ADDCOLUMNS ( 
   CROSSJOIN ( 
       VALUES ( Calendar[MonthName] ), 
       VALUES ( Customers[AgeRange] ) 
   ), 
   "Result", CALCULATE ( COUNTROWS ( SUMMARIZE ( Customers, Customers[CustomerCode] ) ) ) 
) 

The query plan shows, as usual, the elimination of the scanning of the fact table for the values of month 
name and age range: 

 

 

 



 

 

Well, after a long journey through query plans and different patterns for distinct counts, it is now time to 
draw some conclusions. 

The following charts show the best time for each pattern (that is, the most optimized formula I have found 
using either DISTINCTCOUNT OR SUMMARIZE). If you do not care about SCD handling, then this is the 
situation: 

 

For the base measure or for grouping on the same table, SUMMARIZE is more than twice as fast. But as soon 
as you try to group on many tables, which is the most common scenario, then DISTINCTCOUNT is faster. 
DISTINCTCOUNT provides performance that does not change much from scenario to scenario; its consistency 
provides the end user with a good experience. 

If you need SCD handling, however, then the scenario is totally different: 



 

 

 

When SCD handling comes into play, DISTINCTCOUNT wins for the base measure and for grouping on the 
same table, but it is so slow on grouping on different or many tables that it is simply not an option. 

Now, the big question is “which pattern should I follow?” The answer, as often happens, is “it depends.” The 
goal of this paper has never been to show the best pattern for computing distinct values in DAX. In fact, the 
title is “Understanding Distinct Count in DAX Query Plans,” which is a completely different topic. 

As an example, I show below the measurements taken on a different database, with a different distribution 
of values and a different number of distinct counts for the involved columns. First is the chart without SCD 
handling: 



 

 

 

And next is the chart with SCD handling: 

 

As you can see, the results are very different. In fact, on this database, there is no gain in using the 
SUMMARIZE version of the DISTINCTCOUNT calculation. 

I wanted to show that by using query plans you have the option of understanding the algorithm used by the 
DAX engine to retrieve values, as well as to show how, by adapting your code to the specific scenario, you 
can often get great results. For each pattern and for each scenario, there is a huge difference between the 



 

 

worst and the best choice, such as between the naïve query and the one that required some optimization 
effort. 

The best advice I can give you, at this point, is the following: test performance with your data. If you can 
control the shape of your queries, spend time optimizing them. If you cannot, then go for the pattern that 
provides the best overall performance, knowing that you will not have a perfect formula, but will have the 
best you can afford. 

What you cannot afford to do is perform some testing on the base measure and then think that your job is 
done. As we have demonstrated in this paper, the behavior of the base measure is not a good indicator of 
how well your measure will perform when included in a complex query. 

As a final note, remember that we have only scratched the surface. An important part of our job is optimizing 
customers’ data, and we have found many times that the same query, on different datasets, with different 
data distribution, leads to completely different results.  

We cannot overstress this simple fact: DAX can provide astonishing performance, but you need to test the 
queries on the data, understand the query plan, and find the best formulation of the query for your specific 
database. Our hope is that, by reading this paper, you now have more weapons to optimize your DAX. 

 




