m sqlbi

SQLBI METHODOLOGY
AT WORK

Draft 1.0 — October 1, 2008

Alberto Ferrari (alberto.ferrari@sqlbi.eu)

Marco Russo (marco.russo@sq|bi.eu)

www.sqlbi.com

INTRODUCGTION ...ccoiiiiiiiiiiiiniiiiiiiiiiiiunsiiiesiiisasssitesiiissssssiteeiiissmsssiteeiissmsssiieteiiisssssstiteeiiissssssttietiiisssssseeessssse 3

THE WHOLE PICTURE «.ettuueetuuueeessuneessunneessuneesssunesssnnesssunseesssnnsssssnsessnsssssssnssssssnsssssanssssssnessssnnessssnneesssnesssseseeesnnsesssnnns 4
THE ANALYSIS PROCESS vt eeetuuueeruuneessuuneesssnesssuneessuneessssneesssneesssnssssnnsssssnnsssssunsssssanesssssneesssnnessnsnesensoneeeetoneersneeensnnns 5
ANGIYSIS Of tNE ETL PACKAGE.eeeeieieeeee ettt ettt e et e e et e e ettt e e st e e e saseaeenaanes 5
ANGIYSiS Of SSAS QATA SOUICE VIQWS.......ccoeueeeeeeiiieeeeiiiee e eeee ettt e ettt e e sttt e e sttt a e et e e s ssteaessstaaesnasseesssses 9
USAGE OF SCHEMAS ...eettuueettuneeesuuneesssnneeessneeessanessssnseesssnessssnsesssnssssssnessssneessssnsesssunessessseesssnneeestansesssnneesssoneerssnneereen 12
DATA WAREHOUSE DATABASE ...ueettuuuetetuueeetsueessssnneessuneeesssneessssnessssneeessansesssuneessssneeesssneesssnneesesnneeeetaneerssnneeeeroneerssnneerens 13
FINANCIOI SUDJECE ATEQI ...ttt ettt e e e e ettt a e e e ettt e e e e e e snissseeeeas 14
COMMON SUBJECE ATCQ ...ttt ettt ettt e e e e ettt e e e e e ettt e e e e e e ststeeeaeeesnassnneeeas 15
PrOGUCES SUDJECE AT QI ...ttt ettt et e ettt e e e e e ettt e e e e e ettt e e e e esnssneeeeas 15
R [N o] [=lol 4 V=1 B UUPRURPRR 17
Usefulness of the Data WarehOoUSE LEVE!cccceeeeeeeeeeeeeeeeeeee e, 19
OLTP IMIIRROR DATABASE ...ceeettteitettttttettttetttetetteteeeeeteeeeeeeeetaeeeaeaee e et e e e e e e e e e e e e et e e e e e e e e e e e e e ee e e e e es e e e e ee e e s e eeseeeeeeeneennssnnnnnnnnnnnnns 19
(O] Ta g] Moo Lo 1o PPNt 20
OLTP MIiITOE VIEWS ... eeeeeeeeeiieee e eeeeee e e et eeeee s e e e ettt e s e e e e e et tasas s e e e et e tasaa s s s e e astassasssssassssssansssssanssssnananaans 21
CONFIGURATION DATABASE ..ccetttettettteteeeteeeeeeteeeereaeeeeeeeeeeeeeeeeeeeeaeaeeeaaeeeaeaaeaeae e e aa e e e e ee e e e e e ee e e e e e e s e eeeeeee e e eeeeeeeeeneennsnnnnnnnnnnnnnns 24
Configuration for the SAlESs SUDJECE AT@Q............uueeeeeeeeeeeeiiiiiieeiieeeiiieeeeieeeeetteeteeeeeaeeseeesesseseeesssssssssssssssssssssnsnnnnnnes 24
CSV files CONVEItEd tO LADIEScoovveeeeeeeeeeeeiieeieeeeeeeeeeee ettt taeeeeeeaeaeeeessssesessessssnssesnnnnnnnnnes 25
DATA WAREHOUSE ETL PHASE ... s 25
Pay attention to compPiled PIANS fOr VIEWSoeeeeeeeeeeeiiiiiiiiiiieiieieeeeeeeeeeteeeeeeeeeeeeeeaeaeteeeeeeeseeeeseesessssessssssnnnnnnnes 25
CUITENT / HISEOTICOI VOIUESovvvvvvviviiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiieieeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 26
DL oo I o T=X N 26
10 o o I 1Y Lo T AV =3 UUPTPRURRPRN 30
DATA IMIART ETL PHASE .. s 32
YV [o =B (= i 1 1e Ta Lo | [T o PR 33
100 T VA e 1 VT2 1 Yo Ta T | o BNt 34
CUBE IMPLEMENTATION 1. ttttuueetuunseetuuneetunseesnnsessssnsessnnssessssssessssssessasssessssssessssssessnnseessnnsesssnssenssnneesssnnsenssnneensnnsesnsnsens 36
DOEA SOUICE VIBW....veeee ettt ettt eee e e e e ettt e e e e e e ettt eee s e e e e ettt e e s s e e aeetasaasssaaasetssnaaassaaasssssnnnnsaans 36
RYe [=X 1o T o -] SRR 40
PrOMOLIONS ...oeeeeseeiiiee ettt e ettt e e e e ettt e e e e ettt ee s e e e e e ettt aae s e e e e e ttaaaaes s e e e e tassnasesaeasetssaaessaaasssssnannaaaes 40
DOCUMENTATION OF THE WHOLE PROJECT .uueevruueeruuneeerunneeensnnsessunssessnnssesssnssessssssesssnsesnsnnseessssssssssnssessnnseessnnsesesnserssnnserees 41

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 2

Introduction

After having defined our methodology in the previous paper (Introduction to the SQLBI Methodology,
available at www.sglbi.com), we are going to test it and describe the deeper and technical details by
providing a complete solution based on the AdventureWorks database.

The starting points are:

e AWDataWarehouseRefresh. It is a package provided by Microsoft as a sample ETL solution to build
the adventure works data warehouse. We will rebuild it completely because we are going to make
heavy changes to the underlying database structure.

o Adventure Works DW. Based on the data warehouse built by the previous package, it is a complete
Bl solution used to demonstrate several features of SSAS.

We are not going to describe in full detail neither the Adventure Works OLTP database nor the solutions
provided by Microsoft. You can find several sources on the web that will document both. Our goal is to
describe the problems in the solution and let you follow our thoughts in the process of rebuilding it. Clearly,
we do not intend to criticize Microsoft’s work, our intent is to show how to build a full solution and
Adventures work is a perfect candidate for doing so.

Even if it is only a demo, we think it is very important to follow it in details. As consultants, we often work
for customers who already have a working Bl solution but want to improve its design to gain better
performances and/or a better architecture to let the solution grow gracefully in the future. The
considerations and thoughts that we do in those cases are exactly reproduced in this demo.

The steps will be:

e Analyze the SSIS package that builds AdventureWorksDW and modify it in order to make it easier to
maintain and clearer to understand. This will lead us to a better comprehension of the steps
needed to transform the OLTP database into the Kimball data marts.

e Analyze the data source view of the SSAS solution to check for computation hidden in the named
queries and/or in the computed fields of the data source view. We will remove all those
computations from the data source view and move them to the data warehouse level.

e When we will have a clear understanding of the ETL process, we will be ready to build the data
warehouse level. We will produce a model of the data warehouse with a modeling tool and we will
document all the steps needed to transform the OLTP database in the data warehouse.

e Deeply review all the data flow tasks in the SSIS package

Our goal is to start from the AdventureWorks OLTP database and build a complete Bl solution using the
techniques described up to now. The final solution will be much similar to that of Microsoft but, from an
architectural point of view, it will show the power of our approach to the development of a Bl solution.

We will not describe the whole solution in the book; sources are available on the web and we have
extensively commented them. What we think is important to get here are the principal concepts of the
data warehouse architecture. Moreover, as the book is mainly focused on SSAS solutions, we will not spend
too many words on the SSIS package implementation. We will bring to your attention some hint and tips,
when we feel that they might be useful, but the focus will be on the architecture, not on the specific
implementation of the ETL with SSIS.

A note for our readers: you can read the whole chapter without ever opening BIDS to see the solution or
you can look at the solution while reading the chapter. The choice is up to you and depends on what you

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 3

http://www.sqlbi.com/

want to learn from this chapter. If you are strong on SSIS and SSAS and you are mainly interested in the
concepts of the application of our model to a real world situation, you can simply go on reading the
chapter. If, on the other side, you want to dive into technical details of the solution and see some hint and
tips about SSIS and SSAS, then the best will be to open the demo projects and to study it while reading the
chapter.

THE WHOLE PICTURE

Before diving into the technical stuff of the solution development, let us review the final solution, according
to our methodology:

OLTP Database

(Adventure Works) OLTP Systems

Mirror of the database, user specific

OLTP Mirror Configuration configuration sofware

Data consolidation, cleansing, corrections,
DATA WARE HOUSE integration of all sources of data,
introduction of data ware house entities

Surrogate keys, SCD handling, change of

ERIENREE e granularity, user interface handling

Hierarchies, user specific needs, MDX code,

Financial Cube Sales Cube .
aggregate reporting needs

IMG (0132): Complete Adventure Works Solution

Let us comment the picture in more detail:

e We start with the Adventure Works database and mirror it copying only the useful tables and
columns. Our goals are speed and ease of management, no business logic should be inserted at this
step. The step will be carried on with a free tool to mirror databases.

e We build a Configuration database that holds all the configuration data for the final solution. If this
were a real world solution, we would have to write some user interface with the configuration
database to let the end user interact with it.

e In the data warehouse, we consolidate data, cleanse it and create a complete view of all the
information that will be used for subsequent reporting and analysis needs. The step between the
OLTP mirror and the data warehouse is the hardest, at least from a conceptual point of view. We
will create new entities thinking at the analysis of data and forgetting the operational point of view
of the OLTP database. This step will be composed of views that gather data from the OLTP and feed
an SSIS package that makes all the ETL operations.

e The data in the data warehouse will move into the data marts. In the data marts the point of view
changes. We are no more concerned with the structure of data but we will focus on what the user
wants to see. A date field might become a string, if the user wants to see it in a fancy way. The data
warehouse maintains the structural view of data while the data mart will mix the logical structure
with user specific requirements. Moreover, we adopt Kimball’s methodology and define facts,

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 4

dimensions, bridges, slowly changing dimensions and all the features needed for a good data mart.
A set of views will feed an SSIS package that builds the data marts. The views might be complex, as
they might need to aggregate data, join tables and — in general — follow the data warehouse
structure to fully de-normalize it and produce data marts.

o The final step will move data from the data marts in the SSAS solution that will hold the cubes.
Technical requirements might lead us to define different views for the same data, to change some
esthetic aspects of a single column, to rename fields according to the user requirements. This step
will be composed solely of views, as no processing should occur; the views will (and need to) be
very simple and fast.

Since we do not want to show only the final solution, we will write the chapter trying to make you following
all the work and the considerations we did in order to make Adventure Works adapt to our vision of the
data warehouse architecture.

The flow of the analysis will be different from the steps presented here. You must consider that no OLTP
mirror database can be created until we know exactly which columns are needed from the OLTP database.
Therefore, even if the OLTP mirror database comes first, it will be the last one in the development cycle.
The flow of knowledge about the data warehouse is different from that of the data. First, we need to build
and describe the data warehouse. Then, we will be able to load it and let it bring data to the data marts.

Moreover, even before being able to write down the data warehouse structure, we will spend some time
analyzing the Adventure Works solution that is available on the web in order to use it as the starting point
of our analysis process.

THE ANALYSIS PROCESS

The first step of our re-engineering of the AdventureWorks solution is to study the original one and detect
all the potential errors in its structure.

The solution is composed of two different items: an ETL package that loads the data marts with data
coming from the OLTP database and an SSAS solution that effectively creates the cube structures.

e The SSIS package that creates the AdventureWorksDW database is located under the program files
folder in “Microsoft sqL Server\90\Samples\Integration Services\Package
Samples\AWDataWarehouseRefresh”.

e The SSAS solution is located under the program files folder in “Microsoft SQL
Server\90\Tools\Samples\AdventureWorks Analysis Services Project\enterprise”. We will use the
enterprise solution as it is the most complete. However, we will not rebuild the whole SSAS
solution as it contains data mining projects and several other features that are out of the scope of
this example.

We will review both of them and will redefine their structure according to our methodology. The analysis
process will require us to dive into both the ETL and the SSAS solution to gain knowledge on how the facts
and dimensions are constructed starting from the OLTP.

ANALYSIS OF THE ETL PACKAGE

First, we open the ETL package to gain a good knowledge of how the data coming from the OLTP database
is handled in order to create the data marts. As this is an example, we would expect it to be easy to read.
Many people will start learning SSIS programming with that package and we believed that a good effort has
been spent in making the package a good example. Opening the package has been a real surprise, at least
from the clearness point of view.

In the following picture, you can see the original package:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 5

IMG (0116): Original ADW Package

We normally use Visual Studio on a 30” display with a resolution of 2560x1600 pixels. Even if this package
fills the whole monitor, we still do not have a clear view of what it does. There are so many arrows
intersecting each other that it is quite impossible to understand the real dependencies.

Therefore, the first work is that of making some esthetic improvements on the package, in order to make it
easier to read on a normal display. We started with these modifications:

e Introduce sequence containers to group related data flow tasks and remove almost all the
dependency arrows between simple tasks. This might reduce somewhat the degree of parallelism
in the package but will greatly enhance readability. The correct balance between readability and
performances is always a difficult decision to take but, because we are making a demonstration
package, we will prefer readability against performances.

e Remove useless information from the names of the single data flow tasks to reduce their size. In
our opinion it is useless to start the name of a data flow task with “data flow task”, it should be
clear to any SSIS programmer what a task is, just by looking at its icon.

e Align all items and make their size reasonable. Tasks with varying size lead to bad alignment and
make the whole package difficult to read. Again, this is only esthetic but it is very important.

We made a copy of the original package and named it “ADWDRefresh (Esthetic Changes)”. You can find it in
the “Adv — ETL” project of the final solution, with all these modification already made. The package, after
those updates, looks much better:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 6

] - 2
5] = Temporary Tables N
-'jH Database and tables A
Drop temp tables ~ o
f"J Prepare New ~ jﬁ p t=mp ~ jﬁ Create temp tables A
& Database ~

'1 . 1 Exec Create
U Exec Drop Script
E% Drop datsbase Lﬂ LJ Script

]

8
Eﬂ Create database f’u N
I 5 Load temporary tables -~
L L 1 |
= set database options 1ol lais . tolm Product Category
_I P Customer Yearly Income Individual Foreign Data ForeignNames
I | L 1
1ol Product Sub Category ol X
Foreign Names Product Foreign Mames
Create tables R 1, Create udf Minimum {8l Special Offer Foreign 8l
L ‘f Date function _n_'|?.|| Datz Store Min Payment
1 Exec Create
L_I Saript
lJ—DJ ~
= Dimensions and files read from CSV ~
=) =]
EH Dimensions from OLTP o LvH Dimensions depending on Temporary Tables ~

»

=]
EH Bulk Insert from C5V files

1
(111

L] i}
51 Dim Reseller

h

! L4 L Dim Sal 4 L Dim D tment L
Fact Finance é"iﬁ] DW BuildVersion TJ_,JJ Tg:rit:risl 1J_,JJ G:_n;upeTar =" 1J_,JJ Dim Geography

1 - . "
naio] iolm Dim L LJ Dim Sales HL:JJ Dim Department L L
Dim Account Organization]irjj Territory 2 ' Group 2 iy Dim Customer i Dim Product

1 |
taim lolm o y 4 B L
Dim Time Dim Scenario 5 Dim Employee i Dim Currency L L Dim Product [B Dim P i
3 3 im Promation

Category

l]i;jj Dim Sales I
Reason L Dim Product

Subcategory

»

fu F b
= act Tables
li;tj Fact Reseller l]i;jj Fact Currency U Fact Internet

Sales Rate > Sales Reason | —

| Create ke d
L-H e e an 2 l]i;fjj Fact Internet lli;fjj Fact Sales
Sales Quota

]
L-J_’ Clean Database N

1 Add Pr\mary

I__I -1 Drop udfMinimumDate
I Ei‘ Function
i
|£ /| Add Indexes jﬁ Drop temp tables %
I 11 Executs SQL
LE‘ Add Forelgn Li‘ e

IMG (0117): ADW Package after esthetic updates

We can appreciate that esthetic is very important in SSIS packages, as it is normally in source code. If we do
not pay attention to clearness, we will end up with a very difficult package to read. With those
modifications, it is now very easy to understand the tasks that compose the package. Moreover, grouping
related tasks in sequence containers, we greatly reduced the number of arrows in the whole package. Now
that we have fewer relationships, we gained a much clearer structure and we can start to analyze the ETL
phase.

There are two sources of data:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 7

e (CSV files: these files contain data that is not present in the OLTP database but is needed for the
final data marts. All the financial information and structure is kept there. We will remove the flat
files and move those data in the configuration database, in order to understand the data better.

e OLTP database: it is the well-known AdventureWorks database. Several complex queries retrieve
the data from the OLTP database and move them in the data marts. Some of these queries are very
complex and we will make them easier using the data warehouse technique.

Before going down in further updates, we can make some considerations about the structure of the ETL:

e The “Database and tables” container will destroy the existing data warehouse database and then
will rebuild it, executing all the scripts with the name “CreateTable-*.SQL”. Moreover, it will create
an UDF function in the data warehouse. The package will destroy this function upon termination.
We do not like this approach because the destruction and rebuild of the database is in the same
package that uses it. If something goes wrong during the package debugging, you will end up with
an incomplete database and the full package will fail to validate. For this reason, we will create a
separate package that creates the database from scratch. If anything goes wrong, you can safely
execute it to rebuild the empty database.

e The “Temporary Tables” container will drop and recreate several temporary tables directly into the
OLTP database. These temporary tables will contain data coming from the CSV files (see “Load
temporary tables” container). They represent external data coming into the data warehouse. In our
structure there is no place at all for this kind of operation. The OLTP is read-only and we will
eventually write CSV files in the configuration database or in the staging one, depending on their
usage. We have to note that — from an architectural point of view — there is no difference between
a “temporary table” and an “OLTP table”. We have no place for temporary tables in our structure if
they contain useful data that will definitely go into the data warehouse. This information must go
into the configuration database and must have a name and a structure so that any package that
needs them can safely use them.

e The temporary tables contains two kinds of data:
o Translation data, i.e. names of some dimensional attributes in different languages
o External data: i.e. information not found in the OLTP database

From the package, it is not evident which data is used for translation and which is used for loading
new data into the data warehouse. We will make the structure clearer using the configuration
database schemas.

e The “Bulk Insert from CSV files” creates several dimensions that come from the external world (CSV
files in the example). This container does not have a good structure, because it loads data directly
from the external world into the data warehouse. We will store this information into the
configuration database and will provide some loading mechanism to build them.

e The “Dim Time” task does a bulk load of the time dimension. This is wrong. We should create the
time dimension inside the package with a clear and documented logic. Otherwise, it would be very
hard to modify it, for example, in order to add some attributes to the dimension.

e The fact table queries contain several joins between the OLTP database and the data warehouse
dimensions. The package will execute these joins before the creation of primary keys on the
dimension tables. This will lead to poor performances. Moreover, in a well-designed SSIS package
there should be no join between different databases, as it will break the “Connection driven”
structure of the package.

e The final “Clean database” container is useless. It will clear the temporary tables from the data
warehouse and the OLTP but, as we said before, we will not create any temporary table in the data
warehouse nor in the OLTP database.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 8

There are several other considerations to do about this package but we will make them when we will start
modifying the single data flow tasks. For now, we want to focus on the structural point of view and the
information we can gather from here are summarized as follows:

e Bulk Insert from CSV files

o Fact_Finance, Dim_Account, Dim_Organization, Dim_Time, Dim_Scenario come from CSV
files. Those CSV files do not contain any natural key or any defined structure. We will have
to rebuild them in the configuration database or in the data warehouse.

e Dimensions from OLTP

o Sales Territory contains a geographic structure built from the original OLTP sales territory
table, enriched with the country information from the Person.CountryRegion table. It is
composed of two data flows because the first one inserts data from the OLTP and the other
creates the “unknown” record useful in all dimensions.

o The department dimension from the HumanResources.Departments OLTP table. The first
data flow creates a generic node while the second one loads data from the OLTP table.

o Dim Sales Reasons is constructed from the Sales.SalesReasons OLTP table.

o Dim Employee is much more complex. It gathers information from several tables in the
OLTP database to get the whole SCD story of employees. It is not useful to analyze in deep
detail the query. The important point here is that an SCD is built based on OLTP data. In the
data warehouse, we will need to keep all the information needed to rebuild the same SCD.

e Dimensions depending on temporary tables

o Dim Geography is built using seven different tables (the query has to follow complex
relationships in the OLTP database) and one temporary table that holds the foreign names
of the country regions.

o Dim Promotion gathers its data from Sales.SpecialOffer and gets the foreign names for the
special offers from a temporary table.

o Reseller, Product, Customer are all very complex queries that take information from the
OLTP system.

We do not want to bore the reader with too many details about these queries. We have already made the
hard work of understanding each query and define the relationships between dimensions. The real point to
get here is that if we want to understand what are the relationship among dimensions and OLTP tables, we
need to open each data flow task and spend a few hours (or days?) to document everything.

If the Bl analyst of Adventure Works had written a good documentation, then our life would be much easier
but we would still have to handle the classical problem of “out of date” documentation. In the IT world we
are all well aware that if documentation is hand-written, it will inevitably be out of date in a few months
after the first release.

The first lesson here is that SSIS hides documentation in every SQL statement used into sources.

ANALYSIS OF SSAS DATA SOURCE VIEWS

It is now time to dive into the data source view of the SSAS solution in search of hidden computations. It is
not necessary to analyze in deep detail the SSAS solution, because we are just searching for parts of the ETL
process hidden in the data source view. It is sufficient to open the project data source view and analyze all
the tables searching for computed fields. BIDS makes the process easier as it shows computed fields with a
different icon. In the picture, you can see some of the computed fields in the Dim Customer table:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 9

Adventure Works.dsv [Design]

[sm@|me@sS| x| 8 Q-

Diagram Organizer

28 DimCurrency
1= [DimCustarmer (dhba. DimCustamer)

[y =8l Tables> - Moo

[Internet Sales L wTarge... S

[Reseller Sales 1

[Sales Summary

[t Sales Quotas

4 nr » L

Tables r

[F Dimaccount (dbo.DimAccount) ’gﬁa—‘ Facts.
[

? Customerkey

(5] Geagraphykey

[Z] CustomerAlernatekey
(] FirstMame

(=] MiddleMame

(] Lasthame

(=] MameStyle
& srthpate 4,7 Factf...
(] MaritalStatus g

] suffix Jomcu..
=] Gender

[F] Emailaddress
] vearlyIncoms Factl..
(=] TotalChildren

[Z] MumberChildrenatHome
(] HouseOwnerFlag

[Z] MumberCarsOwnad
(] AddressLinel DimP. ..

5] DateFirstPurchase

MarikalStatusDesc
| senderDesc
| HouseOwnerDesc
=1 CommuteDist

DimPr...

= Title
(5] EnglishEducation)
(] SpanishEducation Dimc... DimR. .0

(5] FrenchEducation

(5] EnglishOccupation

[Z] SpanishOccupation

(5] FrenchOccupation

| SimpleDateFirstPurchase
["3 Relationships

IMG (0119): Computation hidden in the data source view

Opening up, for example, the MaritalStatusDesc field, we will find this:

E Edit Named Calculation H=]
Column name: IMaritaIStatusDesc
Description: | ﬂ

Expression:

CASE :I

WHER MaritalStatus ='S' THEN
'Single’
ELSE
"Married'
EMD

Ik Zancel | Help |

4

IMG (0120): Marital Status Description

We do not want to hide this translation of Single/Married into the SSAS project; we want to make it explicit
in the data warehouse providing a remap table that will handle it. Please note that, from the functional
point of view, we are not changing anything. We are only moving computations and concepts where they
belong to, trying to make all the computation explicit.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 10

There are many other fields like this and they have more or less the same structure. Among all, a very
interesting one is in the Dim Reseller table. If we look at the OrderFrequency we will find:

[Edit Named Calculation =]

Column name: IOrderFrequencyDesc

Description: | ;I

Expression:

CASE ﬂ

WHER OrderFrequency = 'A' THEM
‘Annual’

WHER OrderFrequency = 'S' THEN
'‘Bi-Annal’

ELSE
"Coarkerky’

EMD ;|

O Zancel | Help |

A

IMG (0121): Order Frequency Description

Therefore, it seems like all other remap codes. However, when we look at the source query in the SSIS
package that produces the OrderFrequency code, we will find this interesting computation:

CASE Survey.ref.value (
‘declare default element namespace
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey";
(BusinessType)',
‘varchar(10)')
WHEN 'BM' THEN 'Value Added Reseller' --Bike Manufacturer
WHEN 'BS' THEN 'Specialty Bike Shop'
WHEN '0OS' THEN 'Warehouse’
END AS BusinessType,

CASE Survey.ref.value (
'declare default element namespace
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey";
(BusinessType)',
‘varchar(10) ")
WHEN 'BM' THEN 'S' --Semi-Annual
WHEN 'BS' THEN 'A' --Annual
WHEN 'OS' THEN 'Q" --Quarterly
END AS OrderFrequency,

The Order Frequency is computed using exactly the same XML field used to compute the BusinessType
code. Therefore, the interesting fact here is that there is a strict dependency between the business type
and the order frequency. Both are computed as codes and then remapped to description but — in fact —
they represent two different names for the same concept. This is a structural fact that is not explicit.
Therefore, we will make it clearer building a BusinessType table that will provide both the business type
description and the order frequency one.

As we can see, the process of search for hidden computation let us discover structural information deeply
hidden in the solution. Worse of all is the fact that the project itself does not provide a clear understanding
of those structural relationships and it is failing to self document. In order to better understand what we
mean, the following picture shows an extract of the final data warehouse structure, where the relationship
between Order Frequency, Business Type and Reseller is made evident by the database structure:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 11

Sales.Resellers

PK ResellerKey

FK1 | GeographyKey
FK2 | BusinessTypeKey Sales.ResellerBusinessTypes
ResellerName)
NumberEmployees | | PK | BusinessTypeKey
ProductLine

AddressLine1 BusinessType
AddressLine2 OrderFrequency
AnnualSales

BankName

FK3 | MinPaymentTypeKey
MinPaymentAmount
AnnualRevenue
YearOpened
AccountNumber

IMG (0122): Business Type Table

As we have seen, the process of rebuilding the metadata of the data warehouse proceeds with the analysis
of both the SSAS data source view and the SSIS packages that does the ETL. Normally we use the data
source view to build a list of “interesting topics” to analyze and the SSIS package to get deeper details
about how these topics are computed.

If we had more than one cube, we would spend much more time doing this analysis because each cube
might hide different computations based on the same column and all these hidden computation must be
made evident in a clean data warehouse design. The same applies for any report generated with Reporting
Services of any query that produces analysis for the user. All these queries should gather their information
from one single repository, in order to have a coherent environment that produces the user results.

It is not important to go in deeper detail with this specific solution, what we want to stress is the fact that
no computation should ever be hidden in the data source view. The metadata structure of the data
warehouse should be clear at the database level. Moreover, the data source view is an interface between
the database and the OLAP cubes and should never contain any ETL step.

USAGE OF SCHEMAS

Let us recall briefly the usage of schemas in the different databases:

e OLTP Mirror: it will contain an OLTP schema for the table mirrored from the OLTP and a schema for
each subject area of the data warehouse, where we put the views that gather data from the OLTP
tables and produce entities in the subject area. The “Customers” view that will create the
“Sales.Customers” entity is held in the “Sales” schema that contains the “Sales” subject area.

e Data warehouse: it will contain a schema for each subject area where we put entities and a schema
for each subsystem that will be generated from the data warehouse. Subsystems are data marts
but also reports, analytical tools or any other subsystem that gathers data from the data
warehouse. The “Dim_Customers” view that generates the “Customer” dimension in the sales cube
of the Sales data mart will be held in the “SalesDataMart” schema, which contains all the views
required from the Sales data mart.

e Data Mart: it is a single database that will contain more than one data mart. There will be a schema
for each data mart, containing the tables with facts and dimensions that are pertinent to that data
mart. Moreover, it will contain a schema for each cube that is generated from the data marts. The
Customers view that extract customer attributes from the Sales.Dim_Customer dimension will be
contained in the “CubeSales” schema.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 12

e Configuration: the configuration database is a bit different from all the others, because it interacts
with all the different steps of the ETL. It provides information to both the data warehouse, the data
marts and potentially to the cube generation. Moreover, it is a common practice to put the
connection strings in specific tables of the configuration database. The rule of thumb is that the
only “hardwired” connection should be to the configuration database. All other information should
be gathered from there. For this reason, the configuration database contains some schemas that
are inherent to subject areas of the data warehouse (those are the “main” subject areas in our
model) and one schema for each ETL step that will get data from there. An example may be useful:
if during the ETL of the data warehouse from the OLTP we need the tax percentage to compute the
amount of taxes for one sale, then we will create a table in the configuration database named
“Sales.Parameters” that will contain all the different parameters of the sales subject area. Then, we
will create a view “DataWareHouse.Sales_OrderParameters” that will take values from the
“Sales.Parameters” table and provide them to the data warehouse ETL, in the subject area Sales for
the computation of orders. Even if it might seems difficult at first, this naming technique lead to a
very easy comprehension of all the different uses of the configuration database, as we will show
later.

More generally, each database contains the schemas used by itself and the schemas used by the next step
in the ETL phase. It gathers data from the previous steps of ETL from views that have the same name and
schema of its entities; then, it produces views that have same name and schema of the next step.

This usage of schemas and names will lead to a very clean architecture that makes it easy to follow the flow
of data.

DATA WAREHOUSE DATABASE

The AdventureWorks solution has been designed as a pure Kimball solution. It starts from the OLTP and
generates the dimensional structure needed for the cube. We want to build an Inmon database that will
store all the information for the data warehouse and then generate the dimensional structure of the cube
starting from the data warehouse.

In the data warehouse, there are no facts and no dimensions. The data warehouse level is based on the
good old entity/relationship model. Moreover, the data warehouse does not contain surrogate keys, which
will be added at the data mart level.

Let us start with the definition of schemas. The schemas in the data warehouse level are:

e Financial: it holds all the entities that are related to the financial aspect of the data warehouse like
accounts, scenarios and so on.

e Common: this schema contains common used entities like date, currencies, etc.

e Sales: in this schema we will include all the entities related to sales like customers, resellers,
employees and territory

e Products: this schema holds the definition of products.

A problem we have to face is about the multi-language support that is needed by the solution. If we were
going to introduce multi language support at the data warehouse level, we would end up with several
problems:

e Each description in a different language would waste space in the data warehouse.

e The addition of a new language would require a complex operation in order to fill in all the
description for the old rows. Moreover, language support is an “interface” topic. It does not regard
the structural design of the data warehouse.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 13

e Any change in the configuration tables with the translation would require an update of the data
warehouse.

For these reasons, the data warehouse should only contain English description (or your native language, if
the DWH does not need localization). Multi language support will be added at the data mart level, where
we will need to manage user interface topics.

Moreover, the data warehouse will contain several small tables that will provide the data mart will full
description of all the technical fields. Think, for example, to the MaritalStatus flag in the Employee’s
dimension. Even if we can store the flag in a single character field, all the data marts will provide a more
complete description, mapping “S” to “Single” and “M” to “Married”. For this reason, we are introducing
the mapping tables that will then be used by the data mart views. All these tables will be part of the
“Remap” schema and will assure us that we are making a consistent usage of descriptions throughout the
whole data warehouse.

Let us briefly review the various subject areas at the data warehouse level.

FINANCIAL SUBJECT AREA

The financial subject area maintains entity related to the financial life of AdventureWorks. Most of the
tables are not loaded from the OLTP database; they come into the data warehouse from CSV files. The nice
aspect of having a data warehouse level is that we handle external data in a graceful way. Since the data is
into the data warehouse, we do not need to worry about “where” the data comes, we can use it in a
coherent way as long as it resides in the data warehouse.

Financial.Accounts
PK AccountKey Common.Date
FK1 | ParentAccountKey PK | Date
AccountDescription
AccountType DayNumberOfWeek
Operator DayNameOfWeek
CustomMembers DayNumberOfMonth
ValueType DayNumberOfYear
CustomMemberOptions WeekNumberOfYear
MonthName
MonthNumberOfYear

CalendarQuarter
CalendarYear
CalendarSemester

; X FiscalQuarter
Financial. Amounts > FiscalYear
PK,FK1 | Date FiscalSemester
PK,FK2 | AccountKey
6 | PK,FK3 | ScenarioKey
Financial.Organization EE’::f; % Ke
l) DepartmentGrouphey
PK OrganizationKey ‘
Amount
FK1 | ParentOrganizationKey I
FK2 | CurrencyKey
PercentageOfOwnership
OrganizationName
l Financial.DepartmentGroups
Common.Currency Financial.Scenario
PK | DepartmentGroupKey
PK | CurrencyKey PK | ScenarioKey
FK1 | ParentDepartmentGroupKey
CurrencyName ScenarioName DepartmentGroupName

IMG (0126): Financial Subject Area

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 14

Even if this structure resembles that of a star schema, it is not. In the data warehouse design we do not
need to create star schemas, we are free to design the relational model to fit our needs of clarity and
completeness. The star schemas will be derived from this structure and will reside in the data mart level.

COMMON SUBJECT AREA

The “Common” subject area is used to group the structures that are commonly used in the data
warehouse. There is nothing special to say about this subject area, it exists in almost any data warehouse
we have ever designed and contains, at least, the “Date” entity.

Common.Date

Common.CurrencyRate

PK | Date

PK,FK1 | Date
DayNumberOfWeek |«§———— PK,FK2 | CurrencyKey
DayNameOfWeek
DayNumberOfMonth AverageRate
DayNumberOfYear EndOfDayRate
WeekNumberOfYear T
MonthName
MonthNumberOfYear
CalendarQuarter
CalendarYear
CalendarSemester Common.Currency
FiscalQuarter
FiscalYear PK | CurrencyKey
FiscalSemester

CurrencyName

IMG (0127): Common Subject Area

In this case, we added the currency and currency rate entities to the common subject areas. Even if the
currency rate is used only in the sales cube, we want to look forward and think that, in the future, several
other cubes might use the currency rate entity.

PRODUCTS SUBJECT AREA

This is a quite complex subject area. We use it to describe what a product is.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 15

Products.ProductDescriptions

PK | ProductDescriptionKey
PK | CultureKey

Products.Classes Culture
ProductDescription
PK | Pr | K
Products.Subcategories Products.Categories
ProductClass
PK ProductSubcategoryKey —> PK | ProductCategoryKey
Products.Products ProductSubcategoryName ProductCategoryName
' FK1 | ProductCategoryKey
Products.Styles PK | ProductKe

PK | ProductStyleKey 4— FK1 | ProductSubcategoryKey
FK2 | FinishedGoodsFlagKey

ProductStyle FK3 | ProductLineKey

FK4 [ProductStyleKey

FK5 | ProductClassKey
ProductDescriptionKey

SizeKey Products.ProductsHistory
WeightUnitMeasureCode
SizeUnitMeasureCode PK,FK1 | Productke
Products.Photos ProductName PK DateStart
PK.FK1 StandardCost ‘
J ProductKey Callar DateEnd
ListPrice
ThumbNailPhoto —» B DealerPrice
ThumbnailPhotoFileName ListPrice StandardCost
LargePhoto Ny
LargePhotoFileName Weight
DaysToManufacture
DealerPrice

ModelName

Products.Lines

Remap.FinishedGoods e ! PK | ProductLineKey
.. < _
PK | EinishedGoodsFlagKey ‘ ProductLine
FinishedGoods v
Products.SizeRanges
PK | SizeKey
SizeRange

IMG (0128): Products Subject Area

There are several aspects to note about this subject area:

e Several entities exist here even if they have no corresponding table in the OLTP database. Look
for example at Products.Styles and Product.Classes. These tables do not exist in the OLTP database,
because the description of the codes was hardwired in the data source view of the SSAS solution.
The data warehouse takes care of this aspect by creating the table and letting us navigate easily the
real structure of the data warehouse.

e Some relations are not enforced with foreign keys. The link between Products and SizeRanges, for
example, is shown with a dotted arrow. This means that there is no “real” relationship between
products and size ranges. This kind of relationship should be represented with a LEFT OUTER JOIN
in any query because it is acceptable to have a ProductSize value that has no corresponding value in
the SizeRanges table. Even if it might be strange in a relational model, these kind of relationships
are indeed very common in the data warehouse solution.

e There is no need to perform a full denormalization process. Each product has a subcategory that —
in turn — has its category. If we were in the data mart world we would have defined category and
subcategory at the product level but — in the data warehouse world — there is plenty of space for
normalization, if it helps in the structure. The goal of the data warehouse is not to provide a fully
de-normalized structure that will be analyzed by automated tools, the goal is to provide the
foundation for any kind of analysis and, for this reason, only a slight denormalization process
happens here.

e Products is not an SCD. It could not be an SCD simply because it is not a dimension. In the data
warehouse world, there is no space for a concept like “dimension”. Everything is an entity. For this
reason, we keep the history of products in a separate table and we will generate an SCD from these
two tables only if it will be necessary. Moreover, we might have a cube that needs SCD handling
and one which does not. The data warehouse needs to be able to feed both.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 16

SALES SUBJECT AREA

The sales subject area is — naturally — the most complex one. We divided it into two pictures because the
employees part of it is quite complex by itself.

Remap.SalesPersonFlag Remap.Salaried
PK | SalesPersonFlagKey PK | SalariedFlagKey
SalesPersonFlag Salaried Sales.EmployeeHistory
ﬁ ? PK,FK1 | EmployeeNationallD
PK DateStart
Sales.Employees
DateEnd
Remap Gender PK | EmployeeNationallD DepartmentName
PK | GenderKey |f———— . MaritalStatusKey
FK1 | SalesTerritoryKey FK2 PayFrequencyKey
Gender FK2 | SalariedFlagKey BaseRate
FK3 | GenderKey
FK4 | PayFrequencyKey
Sales. Territory FK5 | ParentEmployeeNationallD
FK6 | MaritalStatusKey
PK | SalesTerritoryKey FK7 | SalesPersonFlagKey Remap.PayFrequency
| FirstName
SalesTerritoryRegion LastName ——— | PK | PayFrequencyKey
SalesTerritoryCountry MiddleName
SalesTerritoryGroup NameStyle PayFrequency
Title
HireDate
Sales.EmployeesStatistics BirthDate Common.Date
Loginld
PK,FK1 | EmployeeNationallD EmailAddress PK | Date
PK Year Phone
PK Month —» EmergencyContactName DayNumberOfWeek
EmergencyContactPhone DayNameOfWeek
VacationHours BaseRate DayNumberOfMonth
SickLeaveHours DepartmentName DayNumberOfYear
WeekNumberOfYear
MonthName
= MaritalStat MonthNumberOfYear
emap.MaritalStatus
o Sales.SalesPersonQuotaHistory g::::g::s:::ter
PK | MaritalStatusKey . CalendarSemester
PK.FK1 | EmeloyeeNationallD P FiscalQuarter
MaritalStatus PK,FK2 | QuotaDate FiscalYear
SalesAmountQuota FiscalSemester

IMG (0130): Sales.Employees Subject Area

The important aspects to note here are:

e Vacation hours and sick leave hours were stored in the dimension of the original Bl solution. We
moved them to a new entity in order to be able to differentiate between different periods. If the
data mart needs to expose the last value, it will gather the information easily but, from the data
warehouse point of view, this entity has an historical depth that cannot be lost.

e The OLTP maintains different tables for the historical values of department, payfrequency and
base rate. We merged them into a single historical table. Moreover, as we might be interested in
the variations of the marital status, we added the MaritalStatusKey to the model. Please note that
this is a very simple example of a much powerful feature of having a data warehouse. Even if the
OLTP does not provide us a history of an attribute, we can easily add it to the data warehouse
gaining the opportunity to use it to create an SCD later at the data mart level. As we stated before,
we might decide to use or not to use a specific historical table in the creation of a single data mart.
The data warehouse will hold the complete history and we will be able to decide later whether to
use it or not.

Now it is time to show the complete Sales subject area:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 17

Common.Currency Sales.BridgeOrdersSalesReasons Sales.SalesReasons Sales.Customers
Sales.Channel
PK | CurrencyKey PK,FK1 | SalesOrderNumber » | PK | SalesReasonKey PK | CustomerKey
PK,FK2 | SalesReasonKey Ll PK | SalesChannelKey
Currency SalesReasonName FK1 | GeographyKey
SalesReasonType SalesChannel FK2 | MaritalStatusKey
FK3 | GenderKey
T A AccountNumber
Title
Remap.HouseOwner FirstName
MiddleName
HouseOwnerKey |«
PK |4 wnerk, hal LastName
NameStyle
HouseOwner Suffix
EmailAddress
AddressLine1
Common Date E— Remap.MaritalStatus AddressLine2
PK | Date . - P Phone
P{ Pk salesorderNumber 7 K | MarltalStatuskey B
DayNumberOfWeek L1 3 Yearlylncome
DayNameOfWeek FK1 | OrderDate MaritalStatus TotalChildren
DayNumberOfMonth | FK2 | DueDate Numbe_rChiIdrenAtHome
DayNumberOfYear [FK3 | ShipDate Education
WeekNumberOfYear FK4 | CustomerKey - Occupation
MonthName FK5 | SalesTerritoryKey P”| FK4 | HouseOwnerKey
OfYear | FK6 | SalesChannelKey Numb_erCarsOwned
CalendarQuarter FK7 | Resellerkey DateFirstPurchase
CalendarYear FK8 | CurrencyKey CommuteDistance
C < FK9 | Empl i
FiscalQuarter Revisio
FiscalYear CustomerPoNumber v
FiscalSemester
T Common.Geography
A ; PK
Sales.Promotions Sales.OrderDetails Sales. Territory
B City
PK | PromotionKey PK,FK1 | SalesOrderNumber PK | SalesTerritoryiey | StateProvinceCode
PK i .) l StateProvinceName
PromotionName SalesTerritoryRegion CountryRegionCode
DiscountPct P FK3 ProductKey Sa\esTerr!toryCOUnlry CountryRegionName
PromotionType < FK2 PromotionKey SalesTerritoryGroup PostalCode
PromotionCategory OrderQuantity A FK1 | SalesTerritoryKey
StartDate UnitPrice
EndDate ExtendedAmount v A
MinQty UnitPriceDiscountPct
MaxQty DiscountAmount FlmlEsEe
SalesAmount PK | ResellerKey
TaxAmount
FreightAmount
Products.Products CarrierTrackingNumber EE; gj:i?\:easpsrjlyy}:;?ey
P K ResellerName
PK NumberEmployees
FK1 | ProductSubcategoryKey ProductLine
FK2 | FinishedGoodsFlagKey AddressLine1
FK3 | ProductLineKey v | AddressLine2
FK4 | ProductStyleKey AnnualSales -
FK5 | ProductClassKey Sales Employees e agnlrsName ek Sales.ResellerBusinessTypes
i inPaymentTypeKey
;ir;;d::;DescrlpﬂonKey PK | EmployeeNationallD kﬂinPa‘)rgenmmounl > PK | BusinessTypeKey
i i nnualRevenue
g:é%‘;ﬁag‘::sf:ézggde : FK1 Sales_TerrimryKey YearOpened BusinessType
ProductName FK2 | SalariedFlagKey AccountNumber OrderFrequency
StandardCost A1) || iy
Color FK4 | PayFrequencyKey +
SafetyStockLevel FK5 | ParentEmployeeNationallD ‘
ReorderPoint FK6 | MaritalStatusKey Sales.ResellerMinPaymentType
P FK7 | SalesPersonFlagKey
HEIAIED FirstName PK | MinPaymentTypeKey
Cloht LastName
DaysToManufacture 0 B
DealerPrice MiddleName MinPaymentType
ModelName RameShe
Title
HireDate
BirthDate
Loginid Remap.Gender
EmailAddress
Phone PK | GenderKey

EmergencyContactName
EmergencyContactPhone

BaseRate

DepartmentName

IMG (0131): Sales Subject Area

Gender

The structure is quite complex but still much easier to understand than the original OLTP database.

The difference between sales order headers and details has been maintained in order to make it
easier to follow the relationships between entities. Moreover, in the data warehouse world, there
is no need to de-normalize everything and so we do not do it.

Several remap tables have been added to have a coherent way of describing codes in the OLTP

database (S for Single, M for Married and so on).

The ResellerBusinessTypes table has been created to show the relationship between business type
and order frequency, which was hidden into the queries of the ETL process.

Please take some time to understand the whole structure. In the specific case of Adventure Works the data
model of the data warehouse is very simple, but it is absolutely necessary that the Bl analyst perfectly
knows the structure of the data model, in order to master it and to be able to decide “where” he can search
for something or where he should add a new entity.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com

18

USEFULNESS OF THE DATA WAREHOUSE LEVEL

Looking at the previous pictures, we might wonder if the data warehouse level is useful or not because, at
first glance, it shows a level of complexity that is similar to that of the OLTP database. The answer is a
definitive “yes” for those reasons:

e The design of the data warehouse is with analysis in mind, where the OLTP design has been done
with “operation” in mind.

e The complexity is much lower when compared to the OLTP database. A slight level of de-
normalization has been added and several small tables were added but, from the analytical point of
view, the navigation of this model is much easier than the original OLTP database.

e The model shows arranged corporate data model, not the OLTP one. It does not force us to follow
difficult links between technical entities, as it is the case in the OLTP database. All the “technical
stuff” about the operational usage of the OLTP database disappears in the data warehouse.

o The data warehouse level gracefully integrates data coming from different sources, giving us a clear
view of what data is available for analysis, no matter of its origin (CSV files, OLTP databases, EXCEL
spreadsheets or anything else).

e The data in the data warehouse is granted to be clean and well organized. Because it is loaded by
an ETL phase, we can take any necessary step to cleanse and integrate all the sources of data into a
single view of the whole data model.

One last point stands for all. When we will see the queries that originate from the data warehouse and that
are used to feed the data mart level, we will see that they are straightforward to write and to understand.
This is because all the problems of converting the OLTP tables into a more coherent and analytical view of
data are handled during the data warehouse loading phase. The technique is always that of “divide et
impera”: by adding a level between the OLTP and the data marts, we are separating a complex process into
two easier ones, gaining a lot in terms of readability and maintenance requirements.

OLTP MIRROR DATABASE

In the case of Adventure Works, the OLTP mirror database can be designed easily because we already have,
in the original package, all the queries that need to execute in order to gather data from the OLTP. In a real
solution, the work is harder because it requires detecting all the useful tables and moving them into the
OLTP mirror database, removing later the useless columns.

In order to build the OLTP Mirror database, we analyze all the queries in the ETL package and create new
tables in a database called Adv_OLTP that contains the useful tables and columns from AdventureWorks.
The column names and types are identical to the original OLTP ones. This is the OLTP Mirror Database
discussed in the previous chapters. It contains an exact copy of all the columns and tables needed for the
ETL process. As we have already stated, it will not contain the entire OLTP database but only what is
relevant for the ETL process.

Since we want to use schemas for subject areas in the OLTP mirror database, we move all the tables into a
single schema called “OLTP” adopting a naming convention to maintain the old schema. The original table
Sales.Orders, for example, has been moved to OLTP.Sales_Orders. In this way, we will be free to use the
Sales schema with the data warehouse meaning without having to worry about schema usage in the
original OLTP database.

The first good and very important result is that, if we want to see what is used in the OLTP database, we
can just browse the Adv_OLTP database with SQL Server Management Studio and have a look at the
columns in each table.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 19

In the following picture, we show the OLTP.Person_Address table:

- | Adw OLTP
+ [Database Diagrarms
- [Tables
+ [Systern Tables
7 = OLTP.HumanResources_Department
7 E OLTP.HumanResources_Employee
&= OLTP.HumanResources Employeefddress
7 = OLTP.HumanResources_EmployeeDepartmentHistory
7 = OLTP.HumanResources_EmployesPayHistony
o) E OLTP.Persan_Address
- 4 Columns
=] City (revarchar(300, not null)
=] PostalCode {rrvarcharilS), not null)
=] StateProwvinceld {int, not null)
=] AddressId (int, not null)
=] AddressLinel (rwarcharf60), not null)
=] AddressLine? {rvarchar(G 0y, null)
[Keys
[Constraints
[Triggers

+

|

+

IMG (0125): Adv_OLTP useful to see the columns usage of the OLTP database

We can easily see that it contains fewer columns than the original table and we can be sure that all of those
columns are necessary in the ETL phase. Moreover, if a table is not present in the OLTP schema, we can
grant for sure that the OLTP table is useless in the ETL phase of the data warehouse construction.

If, for any reason, a new field will be necessary in the future, it would be enough to add it to the OLTP
mirror database to show the evidence of this new requirement. No hand-made documentation is requested
for this task. No hand-made document exists, it would be always out of date.

We might want to create a better documentation for the OLTP database. In that case, a good solution is to
make a reverse engineer of the OLTP mirror database with a modeling tool and document all the columns
and tables in that tool. We use Microsoft Office Visio (Visio hereinafter) as a modeling tool in our example.
After the first reverse engineer, we can use Visio to make any update to the OLTP database and use Visio
reports to document the OLTP mirror database.

OLTP MIRROR LOADING

After the definition of the OLTP Mirror tables, we need a method to load it from the original
AdventureWorks database.

We could create an SSIS package with several data flow tasks that SELECT data from the original database

and put them into the OLTP Mirror. This technique has several drawbacks. First, the fact that we have an
SSIS package to maintain. Moreover, the degree of parallelism obtained is very small.

Instead, we used SqlBulkTool with a proper XML configuration file that eases the process of mirroring. You
can find source code and full description of this tool at www.sglbi.eu/SqlBulkTool.aspx. We built this tool

just for this purpose.

Using this tool, we only need to write an XML configuration files that looks like this:

<?xml version="1.0" encoding="utf-8"?>

<Configuration
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="SqlBulkToolConfig.xsd"

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 20

http://www.sqlbi.eu/SqlBulkTool.aspx

MaxNumberOfThreads="15" >

<DataBases>
<DataBase
Name = "OLTP Mirror"
Run = "true"

DataBaseClass="SqlServer"
SourceConnectionString="Data Source=localhost;Integrated Security=True;Initial
Catalog=AdventureWorks"
DestConnectionString="Data Source=localhost;Integrated Security=True;Initial Catalog=Adv_OLTP">
<Tables>
<Table
SourceTableName="HumanResources.Department"
DestTableSchema="OLTP"
DestTableName="HumanResources_Department
TruncateBeforelLoad ="true"/>
<Table
SourceTableName="HumanResources.Employee"
DestTableSchema="OLTP"
DestTableName="HumanResources_Employee"
TruncateBeforeLoad ="true"/>

<Table
SourceTableName="Sales.Store"
DestTableSchema="OLTP"
DestTableName="Sales_Store"
TruncateBeforeLoad ="true"/>
</Tables>
</DataBase>
</DataBases>
</Configuration>

Having the source and destination connection strings and each table definition, the tools analyzes the
metadata of the tables and generates proper SQL statements that produce the mirror. As the tool adapts
itself to the database metadata, we will not need to change anything in the configuration file when we will
add or remove columns to the mirror tables. Moreover, because the tool is intended to produce a mirror at
the fastest speed, we can rely on its design and forget about any SSIS configuration to maximize mirroring
speed.

We do not want to make any advertising about SqlBulkTool, at least because it is free and provided with full
source code! The point here is that the Bl analyst should not use SSIS only because SSIS exists. There are
cases where a bit of coding is the best technique to gather the best results, both in terms of speed and
design. In these cases, the choice of the best tool is very important to the success of the full Bl solution.

Moreover, there are some very specific situations where we will not be able to create the OLTP mirror
database. In these cases, we will skip this step and, instead, produce a database composed only of views
that gathers data from the OLTP and exposes them to the ETL phase.

OLTP MIRROR VIEWS

The next task of the OLTP Mirror database is to feed the ETL phase. In order to do it, we write a set of views
that introduce field renames and — optionally — some very simple computation to feed the ETL phase. Those
views will have the same schema and name of the tables in the destination data warehouse.

Some words of caution: OLTP Mirror is the source of the ETL and not the first step in the ETL phase. This
consideration is very important because, sometimes, we will be tempted to introduce some kind of
computation in the OLTP views, as this might seem to ease the process of the ETL. In our opinion, this is
wrong. The OLTP views should not contain any kind of computation.

A good example of it is the Sales.Products view that retrieves the products from the OLTP for the creation
of the Product entity in the data warehouse:

CREATE VIEW Products.Products AS
SELECT
ProductKey = p.ProductNumber,

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 21

ProductSubcategoryKey = p.ProductSubcategoryID,
FinishedGoodsFlagKey = p.FinishedGoodsFlag,
ProductLineKey = p.ProductLine,
ProductStyleKey = p.Style,

ProductClassKey = p.Class,
ProductDescriptionKey = p.ProductModellID,
SizeKey = p.Size,
WeightUnitMeasureCode = p.WeightUnitMeasureCode,
SizeUnitMeasureCode = p.SizeUnitMeasureCode,
ProductName = p.Name,

StandardCost = p.StandardCost,

Color = p.Color,
SafetyStockLevel = p.SafetyStockLevel,
ReorderPoint = p.ReorderPoint,
ListPrice = p.ListPrice,

Weight = CONVERT (FLOAT, p.Weight),
DaysToManufacture = p.DaysToManufacture,
DealerPrice = p.ListPrice * 0.60,
ModelName = pm.Name

FROM OLTP.Production_Product p
LEFT OUTER JOIN OLTP.Production_ProductModel pm
ON p.ProductModelID = pm.ProductModelID

The view computes DealerPrice using a constant (0.60) and produces the dealer price, assuming that the
dealer price is roughly 60% of the list price. This kind of computation is required in the ETL phase but it
should not be done by this query. As it is a part of the ETL, its place is the SSIS package that implements the
ETL phase. Hiding this information in the source query will create confusion when we want to understand
which fields the ETL process computes and which ones are derived from the OLTP.

The right way to compute the Dealer Price is to gather the list price from the OLTP and then computing the
value in a “derived column” transformation. In this way, the computation is done in its proper place and
any SSIS programmer will easily understand how it is computed.

A good question at this time is “What about JOINs?” At first glance, it seems that a JOIN, as a structural
change in the table definition, should not exist in the OLTP for the same reasons. Again, this is not true. Any
metadata change such as column rename, column type changes, JOINS and WHERE conditions will find its
perfect place in the OLTP queries.

The reasons of being of the OLTP queries are:
e Make the OLTP database easier to manage from the ETL packages

e Introduce a light level of denormalization, removing useless tables that can be better represented
by columns

e Rename OLTP columns in order to make them more suitable for the data warehouse

As always, these rules are not absolute. Sometimes a light level of computation is welcome in the OLTP
qgueries. We have always to remember that building a data warehouse solution is very similar to writing
source code: clarity is the final goal and no rule will ever lead us to success, only our brain will do it.

Beware that, even if JOINs are acceptable in the OLTP queries, they must be local to the OLTP mirror
database. There is no reason to make a join between different databases. If this is needed, we will handle it
with SSIS using lookups. We must always adhere to the concepts of locality. A query must be
understandable in the environment where it resides. If we need to look into another database (the
configuration, for example), then we are forcing the reader of the query to understand the ETL logic and we
know that there is a lack of analysis that needs to be filled.

As another example, we can consider the OLTP query for the Sales.Orders. The sales table contains the ID
of the customer. The customer can be an internet final customer or a reseller, because the OLTP stores
resellers in the customer table. As the data warehouse will contain two different structures for resellers
and final users, the single customer ID will be split in two different IDs: one for resellers and one for final
customers.

We could write the query like this:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 22

SELECT

SalesOrderNumber = soh.SalesOrderNumber,
OrderDate = soh.OrderDate,
DueDate = soh.DueDate,
ShipDate = soh.ShipDate,
SalesChannelKey = c.CustomerType,
CustomerKey = CASE WHEN CustomerType = 'I' THEN c.CustomerID ELSE NULL END,
ResellerKey = CASE WHEN CustomerType = 'S' THEN c.CustomerID ELSE NULL END,
CustomerType = CustomerType,
SalesTerritoryKey = soh.Territoryld,
CurrencyKey = COALESCE (cr.ToCurrencyCode, 'USD'),
EmployeeNationalID = e.NationalIDNumber,
RevisionNumber = soh.RevisionNumber,
CustomerPONumber = soh.PurchaseOrderNumber
FROM

OLTP.Sales_SalesOrderHeader soh
INNER JOIN OLTP.Sales_Customer c
ON soh.CustomerID = c.CustomerID
LEFT OUTER JOIN OLTP.Sales_CurrencyRate cr
ON soh.CurrencyRateID = cr.CurrencyRateID
LEFT OUTER JOIN OLTP.HumanResources_Employee e
ON soh.SalesPersonID = e.EmployeeID

Again, we are hiding an important aspect of the ETL phase in an OLTP query. We are assigning a value to
CustomerKey or to ResellerKey to divide the input in two streams that represent different orders. A better
solution is to let the query return the CustomerID column and then write the code that separates between
internet and reseller orders in the SSIS package:

L OLTP Sales
Orders

m”~ Check Sales
¥4 Channel

Reseller Sales T T

l Internet Sales l

£|'l£| Resellar Key

'

£|'l£| Customer Key

'

_ v
n_i Union Al

j Order Headers

IMG (0118): Reseller and Internet orders

Why is this decision so important? Think at “who” will look at each part of the ETL phase. A database
administrator might be interested in looking at the views in order to understand “which fields from the
OLTP are used in the ETL”. He is not interested in the transformation of the columns. His interest is only on
which ones are used and which ones are not. On the other side, an SSIS programmer might be interested in

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 23

looking at how the columns are transformed during the ETL phase. In this case, the SSIS programmer is not
interested in anything but the transformation phase. The real origin of the data is not relevant to him. As
we are good Bl analysts, our goal is to make information available where it is needed. Therefore, we will
move column selection in the OLTP views and column transformation in the SSIS package.

The decision about where to put each step of the computation is not easy, even if it is clear that a well
designed ETL system will be very easy to read. The ability to produce a good ETL system is a fact of
experience. We can only provide some examples and some guidelines, but the final decision is always up to
the Bl analyst. What we want to stress is that these decisions cannot be undertaken, because they are very
important, as they will highly change the quality of the final result.

CONFIGURATION DATABASE

When the Bl solution needs to handle different languages, the configuration database has a schema named
“Translation” that holds all the translations needed. There are several tables there, but we will not discuss
them beacuse they are very easy.

CONFIGURATION FOR THE SALES SUBJECT AREA

Since we have several values that are used to perform both the data warehouse and the data mart ETL
phases and that are all relevant to the Sales subject area, we defined a table (Sales.Parameters) that holds
these values.

The table is very simple and it represents a convenient place where to put configuration values that the
users might need to change over time.

Name Value Description
DealerPercentage 0.70 Contains the percentage of the list prices that represents the dealer price
TaxPercentage 0.08 Contains the percentage of taxes for each sale

FreightPercentage 0.025 Contains the percentage of the amount that is spent on shipment

Following our method, we do want to declare in the database the usage of those values, because
somebody will surely need to read them in the future. For this purpose, we define views that expose values
in the table in a more clean way:

CREATE VIEW DataWareHouse.Products_Parameters AS
SELECT
DealerPercentage = (SELECT
CAST (ParameterValue AS FLOAT)
FROM
Sales.Parameters
WHERE
ParameterName = 'DealerPercentage’)

As usual, this view has two purposes:
e It declares the usage of the different values in the table to anybody who can open the database

e |t declares that there is a dependency between the data warehouse (in the subject area of
products) and the Sales.Parameter table. If we want to know more about this dependency, we will
have to look at the ETL code that loads the Products subject area.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 24

CSV FILES CONVERTED TO TABLES

The original solution had several CSV files that were loaded directly in the data marts. As CSV files are hard
to read and understand, we moved all the CSV files into tables in the configuration database.

Because this is a demo, the tables are loaded during the database creation. In a real world solution, we
would have two possible situations:

e The CSV files are provided from an external system. In this case, there would be a specific ETL
process that loads these files in the data warehouse.

e The CSV files are edited by the user. In this case, there would be some kind of software that allows
the user interacting with the configuration database and editing the information.

In our example the second solution is the correct one: the values are edited in the configuration database
and then moved into the data warehouse, where they will be available to any subsystem that uses them.

DATA WAREHOUSE ETL PHASE

The data warehouse maintains a coherent view of analytical data taken from the OLTP database and needs
to be loaded from the OLTP database. For this reason, we write an SSIS package that loads data from the
OLTP and the Configuration, producing the data warehouse.

The data warehouse ETL phase will start with the views that gather data from the OLTP and move all
information in the data warehouse.

It is very hard, if not impossible, to give generic advices about how to perform this step. Each OLTP system
has its problems to solve. Moreover, the same OLTP system might contain data that is user-specific.
Therefore, we can say that each customer has its own peculiarities.

Instead of giving general rules, we will spend some words on the decision we took about Adventure Works.

PAY ATTENTION TO COMPILED PLANS FOR VIEWS

Before diving into the project, we want to spend just a couple of words about a very important aspect of
the whole methodology concerning the usage of VIEWS with SSIS.

Views are normally crated on an empty database and our programming model is full of views. We need to
be careful to the execution plan that SQL Server will use for our views. If we SELECT from a very big table
and do several JOINs, then it might be the case that SQL Server stores an execution plan that — at some
point in time — will become inefficient.

The general rules of SQL Server for the recompilation of the execution plans are valid for OLTP databases.
From the Bl point of view, it is always better to pay the price of a full recompilation of both VIEWs and
Stored Procedure before each run, in order to be always sure to get the best plan for our current data.

For this reason, in all the Sources of our SSIS packages, long lasting views are expressed with the
OPTION(RECOMPILE) flag, like:

SELECT
*
FROM
Sales.Resellers
OPTION (RECOMPILE)

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 25

CURRENT / HISTORICAL VALUES

In the OLTP system of Adventure Works there are two different modes of mantaining historical attributes.
Let us take, as an example, the Employees:

n o u

e In Employees the columns “Pay frequency”, “rate” and “department” are stored in the historical
table only, where both date of start and end of validity are stored too.

e In Products the standard cost is kept both in the historical table (which holds all previous values)
and in the current table of products, where the current value is stored.

In the data warehouse, we need to maintain a coherent way of storing information. We decided to keep
the current value in the primary table and the historical values in a separate table, for both products and
employees. This will make it easier, for subsystems that do not need SCD handling, to recover the actual
information about an entity.

Moreover, for the employees there are two different historical tables in the OLTP:
o EmployeePayHistory, which maintains the history of payfrequency and rate
e DepartmentHistory, which maintains the history of departments

To make the structure simpler, we merged both of them into a single historical employees table that
contains both the information, merging the two histories into a single one. The query to do it is complex
but the final structure is cleaner.

XML DATA TYPES

In the OLTP system, several values are stored in XML fields. These fields are hard to query and do not give
good performance. For this reason, we decided to remove all XML fields, substituting them with normal
columns of the proper type.

In this way, the OLTP view will need to handle XML remapping. After the data warehouse loading, all values
will be exposed through standard SQL columns, making it easier to build queries against the data
warehouse.Data Marts design

As we have seen from the data warehouse structure, the financial data mart is very independent from the
sales one. In the original solution, both structures reside in the same cube. In our solution, we will build a
different cube for financial analysis.

By making two distinct cubes, we are making the user’s life easier. He will only see the dimensions and fact
tables related to one specific cube. It is useless, for example, to show the Accounts dimension in the sales
cube, because this dimension is not related to any sale fact table.

If this was a real world solution, we might think to maintain the two cubes in two separate databases. We
think at it because the Bl solution will grow up in the future. Maintaining two separate databases for the
two cubes could lead to some optimization in future implementations. We can imagine two separate
groups of Bl analysts carrying on the work on both cubes in parallel, being sure that they do not interfere
each other. The choice between a single data mart database and separate ones is not an easy one. We
should think carefully at all the implications of the choice and finally make it. Nevertheless, as both
databases rely on the same data warehouse structure, we will always be able to separate them in the
future when it will eventually be needed.

The data marts are pure Kimball data marts. We introduce surrogate keys, fact tables and dimensions. Up
to now, we never minded if an entity will be a dimension or a fact table, because in the data warehouse
world there is no such concept as a dimension or a fact table. On the other side, in the data mart world, all
entities will become fact tables, dimensions or bridge tables and there will be no space for a generic
“entity” item.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 26

Moreover, it might be the case that the same entity in the data warehouse will produce more than one
single entity in the data mart. Data marts exist to make the cube creation straightforward. Thus, we will
cover all the aspects of the final cube production in the data mart.

Before going on with the description, we need to stress a concept: data marts are not cubes. We may
decide to do both cube implementations and/or reporting on data marts. Moreover, a single data mart
might provide information to more than one single cube.

Think, for example, at the date dimension. It will be used both in the financial cube as in the sales one. We
will build a single date dimension in the data mart, but we already know that we might need to create two
distinct SSAS date dimensions for the two different cubes. We will not do it in our example because we are
producing a single solution. However, in case we would decide in the future to create two separate projects
for the two cubes, we would need to feed the two dimensions from a single table.

A better example is that of the currency dimension. We will use the currency as a dimension in the sales
cube, but we will use it as an attribute for the Organization dimension in the financial cube. In order to
avoid duplication of ETL code, we will generate a single dimension table, but we will show to the SSAS
solution the currency as attribute or dimension, depending on our needs. Clearly, we will use views to
create the final dimensions and fact tables consumed by the SSAS solution.

Now it is time to have a closer look at the data mart. Here we define three schemas:
e Common: to hold the common entities like the date dimension.
e Financial: to hold facts and dimensions of the financial cube.
e Sales: to hold facts and dimensions of the sales cube.

We can see that we are using schemas with a different point of view, if compared to schemas in the data
warehouse. In the data warehouse, schemas were used to separate between subject areas. Here in the
data mart area we use schemas to identify different data marts. Later, we will use schemas to define
different cubes.

In the following picture, we can examine the financial data mart.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 27

Financial.Dim_Accounts

PK

ID_Account

FK1

ID_ParentAccount
AccountCode
ParentAccountCode
Account
AccountType
AccountOperator
CustomMembers

Financial.Dim_Departments

PK ID_Department

FK1 | ID_ParentDepartment

DepartmentCode
ParentDepartmentCode
Department

Financial.Fact_Amounts

Common.Dim_Date

PK

ID_Date

PK ID_FactAmount

Financial.Dim_Organization

PK

ID_Organization

| FK5 | ID_Department

FK1 | ID_Account

FK2 | ID_Organization
FK3 | ID_Scenario
FK4 | ID_Date

Amount

FK1

ID_ParentOrganization
OrganizationCode

Organization

FK2 | ID_Currency

Common.Dim_Currency

ParentOrganizationCode |

PK

ID_Currency

IMG (0133): Financial Data Mart

CurrencyCode
Currency

\ 4

Date

DayNumberOfWeek
EnglishDayNameOfWeek
SpanishDayNameOfWeek
FrenchDayNameOfWeek
DayNumberOfMonth
DayNumberOfYear
WeekNumberOfYear
EnglishMonthName
SpanishMonthName
FrenchMonthName
MonthNumberOfYear
CalendarQuarter
CalendarYear
CalendarSemester
FiscalQuarter

FiscalYear
FiscalSemester

Financial.Dim_Scenario

PK

ID_Scenario

ScenarioCode
Scenario

Now that we are in the data mart area, we start speaking about facts and dimensions. Moreover, we need
to use surrogate keys instead of the natural ones used in the data warehouse. The reason is very simple: in
the data marts we will define slowly changing dimension and the natural keys would not be enough to

define a correct key into the tables.

All surrogate keys will start with “ID” prefix to identify them directly. The old keys have been renamed as
“codes”, because they are no longer keys but simply identify original values.

The structure is very similar to that of a star schema even if, for technical reasons, we decide not to
de-normalize completely the currency into the organizations. We could have done it but, as we have a
currency dimension that is needed alone by the sales cube, we decided to leave it as a separate dimension
in the Common schema. Later, when we will build the cube views, we will remove this inconsistency and
will show a completely formed star schema.

The sales picture is much more complex:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com

28

Sales.Dim_Customers

ID_Customer

Common.Fact_ExchangeRate Sales.Dim_Channel
A B PK [ID_SalesChannel
EK1 ID_Currency Common.Dim_Currency
EK2 | ID Date g 2esttanaicede
Sales.BridgeOrdersSalesReasons - AverageRate PK | ID_Currency - SalesChannel
PK,FK1 | ID_SalesReason - -
PK SalesOrderNumber - |Gurrency f
A Sales.Dim_Employees
ID_Employee
¢ v i
Common.Dim_Date EmployeeCode
" ParentEmployeeCode
Sales.Dim_SalesReasons PK | ID Date FK2 | ID_ParentEmployee
PK | ID. Salaried
. |Date FK1 | ID_SalesTerritory
R lesR n - DayNumberOfWeek Gender
. SalesReason o EnglishDayNameOfWeek Sales.Fact_Sales PayFrequency
SalesReasonType - SpanishDayNameOfWeek MaritalStatus
= - PK ID. FirstName
o D: OfMonth « LastName
- Numl fYear FK1 ID_DateOrder MiddleName
. FK9 ID_DateDue Title
- EnglishMonthName FK10 [ID_DateShipment HireDate
- ‘SpanishMonthName P FK2 ID_SalesChannel BirthDate
" | ErenchMonthName < FK3 | ID_Promotion . Loginld
- MonthNumberOfYear FK4 ID_Product Ll EmailAddress
_ | calendarQuarter FK5 | ID_Reseller Phone
- CalendarYear FK6 ID_Customer EmergencyContactName
. C: : FK7 ID_SalesTerritory EmergencyContactPhone
B FK8 |ID_Employee BaseRate
. FiscalYear FK11 | ID_Currency SalesPersonFlag
- Ei SalesOrderNumber DepartmentName
SalesOrderLineNumber DateStart
RevisionNumber DateEnd
2 OrderQuantity
Products.Dim_Products UnitPrice o
»
| PK | ID Product < UnitPriceDit ct
DiscountAmount —
i LD ProductStandardCost
ProductCategoryCode TotalProductCost
ProductCategory
SalesAmount
ProductSubCategoryCode
TaxAmt
ProductSubcategory Freight - -
ProductLineCode 9 a Sales.Dim _Territory
ProductLine CarrierTi » -
PK | ID_SalesTerritory
ProdustSyleCode CustomerPONumber
ProductStyle .
ProduciClassCode - |SalesTemitoryCode
ProductClass \ 4 - W
EnglishProductDescription - | SalesTerritoryCountry
FrenchProductDescription Sales.Dim_Promotions - SalesTerritoryGroup
ArabicProductDescription \ 4
ChineseProductDescription PK | ID_Promotion "
HebrewProductDescription Sales.Dim_Resellers
ThaiProductDescription PromotionCode
Size EnglishPromotion PK_ | 1D Reseller Common.Dim_Geography
SizeRange FrenchPromotion =
EnglishProductName SpanishPromotion ResellerCode PK |ID_Geography
FrenchProductName DiscountPct FK1 | ID_Geography
SpanishProductName EnglishPromotionType BusinessType GeographyCode
ModelName FrenchPromotionType OrderFrequency City
Color SpanishPromotionType Rasslie] ~ StateProvinceCode
DaysToManufacture EnglishPromotionCategory NumberEr L StateProvince
Weight FrenchPromotionCategory Rroductting CountryRegionCode
StandardCost SpanishPromotionCategory AddressL!ne1 EnglishCountryRegion
DealerPrice StartDate AddressLine2 FrenchCountryRegion
ListPrice EndDate AnnualSales SpanishCountryRegion
SafetyStockLevel MinQty BankName PostalCode
ReorderPoint MaxQty MinRaymentTyps| FK1 | ID_SalesTerritory
DateStart AnnualRevenue
=T YearOpened
AccountNumber
FirstOrderYear
LastOrderYear
LastOrderMonth
LastOrderMonthDesc

IMG (0134): Sales Data Mart

CustomerCode
ID_Geography
MaritalStatus

Title

EirstName
MiddleName
LastName

Suffix

EmailAddress

Phone

BirthDate

Yearlylncome
TotalChildren
NumberChildrenAtHome
EnalishE .
ErenchEducation
SpanishEducation

FrenchOccupation
SpanishO s

Numl rsOwn

DateFirstPurchase
CommuteDistance

We have removed all the remapping tables and de-normalized everything in order to show the star schema
that is necessary to the SSAS solution.

The structure looks complex only because there are two fact dimensions (Exchange Rate and Sales) and a
bridge (Orders Sales Reasons). However, if we look carefully, we will easily discover the star schemas. In
order to see them it is enough to build separate diagrams, showing only one fact table for each different

diagram.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com

29

h‘ Sales.Dim_Resellers
Sales.Dim_Territol
Sales.Dim_Employees QUELCIMAE PK |ID_Reseller
PK | ID_SalesTerritory
1D_Employee
PK_|ID_Employee ResellerCode
P SalesTerritoryCode
EmployseCode SalesTerritoZRegion P EJ:::SQ;:';;Z
Products.Dim_Products ParentEmployeeCode SalesTerritoryCountry OrderFrequency
PK |ID Product B ISII)aTanilgzntEmployee SalesTerritoryGroup Eese:erE |
FK1 |ID_SalesTerritory A T T E
ProductCode Gender roduct| l.ne
ProductCategoryCode PayFrequency » AddressL!ne1
ProductCategory MaritalStatus AddressLine2
ProductSubCategoryCode FirstName AnnualSales
ProductSubcategory LastName Sales.Dim_Promotions BankName
ProductLineCode MiddleName M!nPaymentType
ProductLine Title PK | ID_Promotion MinPaymentAmount
ProductStyleCode HireDate A
ProductStyle BirthDate PromotionCode YearOpened
ProductClassCode Loginld EnglishPromotion AccountNumber
ProductClass EmailAddress FrenchPromotion FirstOrderYear
EnglishProductDescription Phone SpanishPromotion Il:astgr:erzlearth
FrenchProductDescription Di: ct astOrderMon!
ArabicProductDescripti ::Z:g::ggg::z:g:’::e Sales.Fact_Sales EnglishPromotionType LastOrderMonthDesc
ChineseProductDescription BaseRate PK ID_FactSales FremfhPromotianype
HebrewProductDescription SalesPersonFlag L SparfishPromoglonType
ThaiProductDescription DepartmentName « FK1 [ID_DateOrder EnglishPromotionCategory
Size DateStart :20 :g—.‘?a'eo“? » FrenchPromotionCategory
SizeRange DateEnd FK2 | ID_SalesChannel ldl SpanishPromotionCategory
EnglishProductName FK3 | ID_Promotion StartDate
FrenchProductName :ﬁ; :g_:rod:.llct Er_1dDate
SpanishProductName B3 ID—(:z:;"o;’er MinQty -
I\clloldeIName iﬂ :g:smeﬂemmry MaxQty Sales.Dim_Customers
olor 4 &
DaysToManufacture N FK11 | ID_Currency PK | ID_Customer
Weight SalesOrderNumber
StandardCost Sale_s_OrderLineNumber - CustomerCode
Sk : ¥ FK1 | ID_Geography
DealerPrice OrderQuantity MaritalStatus
ListPrice Common.Dim_Date UnitPrice Genlder u
SafetyStockLevel = W 5"‘,9"‘?9"“"“°""‘ 1
A ol nitPriceDi ct | Title
ReorderPoint PK |ID_Date DlscourtAraurt U
FirstName
DateStart ProductStandardCost N
DateEnd Date < T ost MiddleName
DayNumberOfWeek il SalesAmount LastName
EnglishDayNameOfWeek | :::igm' 2““'}:Add
SpanishDayNameOfWeek [CarrierTrackingNumber [N EIEII
FrenchDayNameOfWeek CustomerPONumber P.hone
DayNumberOfMonth ‘?mh:)late
DayNumberOfYear CEIYIEE 1D
TotalChildren
WeekNumberOfYear R .
EnglishMonthName HIEEAS A AL
SpanishMonthName EnglishEducation
FrenchMonthName FrenchEducation
MonthNumberOfYear SpanishEducation
CalendarQuarter A 4 EnglishOccupation
CalendarYear X Sales.Dim_Channel :renqhggcupatltqn
- panishOccupation
giasls:lt.:)aJaS:Qester Common.Dim_Currency PK |ID_SalesChannel HouseOwner
= NumberCarsOwned
FiscalYi " :
F;:i:lszamrester PK | ID_Currenc SalesChannelCode DateFirstPurchase
CurrencyCode SalesChannel CommuteDistance
Currency

IMG (0135): Sales Data Mart - Fact Sales

If we look at the fact sales table with its entire referenced tables, we can easily recognize the familiar star
structure of the data marts. The only exception is in Dim_Territory, which is referenced both from the
employees dimension and from the fact table. This is very similar to Dim_Currency. We will remove the
relationship in the cube views, where we will translate the relationship between employees and territory
into attributes of the employees, thus clearing the inconsistence.

DATA MART VIEWS

The data flows from the data warehouse into the data marts and it does it with an SSIS package that
gathers its sources from views. We call them “Data Mart Views”. We want to check some best practices
about them.

In order to do that, let us examine in detail the “Dim_Resellers” view, which computes the dimension of
resellers from various tables in the data warehouse:

CREATE VIEW SalesDataMart.Dim_Resellers AS

SELECT

ResellerCode = ResellerKey,

Reseller = COALESCE (ResellerName, "N/A'),
GeographyCode = GeographyKey,

BusinessType = COALESCE (b.BusinessType, 'N/A"),
OrderFrequency = COALESCE (b.OrderFrequency, 'N/A"),
NumberEmployees = COALESCE (NumberEmployees, 'N/A"),
ProductLine = COALESCE (ProductLine, 'N/A'),
AddressLinel = COALESCE (AddressLinel, 'N/A'),
AddressLine2 = COALESCE (AddressLine2, 'N/A'),

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 30

AnnualSales
BankName
MinPaymentType
MinPaymentAmount
AnnualRevenue
YearOpened
AccountNumber
FirstOrderYear

LastOrderYear

LastOrderMonth

FROM

Sales.Resellers r

= COALESCE

COALESCE
COALESCE
COALESCE
COALESCE
COALESCE
COALESCE

= COALESCE

COALESCE

COALESCE

(AnnualSales, 0),

(BankName, "N/A"),
(p.MinPaymentType, "N/A"),
(MinPaymentAmount, 0),
(AnnualRevenue, 0),
(YearOpened, "N/A'),
(AccountNumber, ‘N/A"),
((SELECT

YEAR (MIN (0.OrderDate))
FROM Sales.Orders O
WHERE O.ResellerKey = R.ResellerKey),
),
((SELECT
YEAR (MAX (0.OrderDate))
FROM Sales.Orders O
WHERE O.ResellerKey = R.ResellerKey),
),
((SELECT
MONTH (MAX (O.OrderDate))
FROM Sales.Orders O
WHERE O.ResellerKey = R.ResellerKey),

LEFT OUTER JOIN Sales.ResellerBusinessTypes b
ON b.BusinessTypeKey = r.BusinessTypeKey
LEFT OUTER JOIN Sales.ResellerMinPaymentType p
ON p.MinPaymentTypeKey = r.MinPaymentTypeKey

UNION ALL

SELECT
ResellerCode
Reseller
GeographyCode
BusinessType
OrderFrequency
NumberEmployees
ProductLine
AddressLinel
AddressLine2
AnnualSales
BankName
MinPaymentType
MinPaymentAmount
AnnualRevenue
YearOpened
AccountNumber
FirstOrderYear
LastOrderYear
LastOrderMonth

= CAST ('N/A’ AS NVARCHAR (15)),
CAST ('N/A’ AS NVARCHAR (50)),
CAST (-1 AS INT),
CAST ('N/A’ AS NVARCHAR (20)),
CAST ('N/A’ AS NVARCHAR (20)),
CAST (0 AS INT),
CAST ('N/A’ AS NVARCHAR (50)),
CAST ('N/A’ AS NVARCHAR (60)),
CAST ('N/A’ AS NVARCHAR (60)),
CAST (0 AS MONEY),
CAST ('N/A’ AS NVARCHAR (50)),
CAST ('N/A’ AS NVARCHAR (20)),
CAST (0 AS MONEY),

= CAST (0 AS MONEY),
CAST (0 AS INT),
CAST ('N/A’ AS NVARCHAR (20)),
CAST (0 AS INT),

= CAST (0 AS INT),

= CAST (0 AS INT)

There are several topics to cover about this view:

e The view is composed of a UNION ALL: the original source and the dummy row. All the dimensions
should contain at least a dummy row where we will map the unmatched references. The technique
of adding the dummy row directly inside of the view leads to some advantages:

o If we ever change the view (i.e. adding a column to it), we will get an error if we forget to
add the same column to the dummy record. This will make it easier to maintain the project
over time.

o By looking at the view, it is very easy to understand and/or review the values of the dummy
record. Moreover, all the COALESCE in the main SELECT should be identical to the values of
the dummy record. This can be easily checked and/or corrected too.

e The view contains several JOINs. This is acceptable as the JOINs are following foreign keys declared
at the data warehouse level. Since we are querying the same database following original keys,
JOINs are accepted and will make the ETL process easier. Moreover, JOINs will declare
dependencies between dimensions and data warehouse entities, letting us to document those
dependencies in an easy way.

9)

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com

31

e The main query contains some sub queries. These are accepted too, because they are computing
MAX and MIN values from a related table. The data warehouse does not need to maintain these
values over time. They will be computed when needed by each data mart view, since we cannot
imagine the same values will be eventually useful to other data marts. Moreover, as the value they
are computing comes from the data warehouse, any other data mart might be able to compute it in
the same way, if needed.

We want to spend some more words on JOINs. In this first query, JOINs are used to remap keys to their
complete description, In this way, the number of rows returned by the query is exactly the same as the
number of rows in the Reseller Entity. This happens because Dim_Reseller is not a slowly changing
dimension. A different situation happens with the Product dimensions in the view, of which we want to
show only a fragment:

CREATE VIEW SalesDataMart.Dim_Products AS

SELECT
ProductCode = P.ProductKey,
DateStart = ph.DateStart,
DateEnd = ph.DateEnd,
StandardCost = ph.StandardCost,
ListPrice = ph.ListPrice,
DealerPrice = ph.DealerPrice,
SafetyStockLevel = p.SafetyStockLevel,
DaysToManufacture = p.DaysToManufacture

FROM

Products.Products p

LEFT OUTER JOIN Products.ProductsHistory ph
ON ph.ProductKey = P.ProductKey

In this case, since the product dimension is an SCD, we rebuild the complete history of it using the
ProductHistory entity from the data warehouse. The LEFT OUTER JOIN will return more rows than the ones
present in the Products table. This is one of the most powerful capabilities of the usage of a data
warehouse to build data marts. From the same entity we can build SCD o standard dimensions, depending
on the specific usage that we want to do of the entity in the data marts.

Even in this case, as JOINs are following foreign keys, they can (and should) be used in views, because they
clearly declare the flow of dependencies.

Apart of complex selection, data mart views should not carry on any ETL step, as it was the case of data
warehouse views. The ETL, if needed, should be part of the SSIS package, where programmers will search if
they want to understand the ETL phase.

In the building of the data mart, we will use several views from the configuration database too. In this
specific situation, we will search for translations of terms in the translation schema of the configuration
database. In a real world situation, we might have more complex interactions between the configuration
database and the data marts. Nevertheless, using views, all these interactions will be automatically
documented.

DATA MART ETL PHASE

The ETL from data warehouse to data marts gathers its data from data mart views in the data warehouse
and:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 32

e Transform entities in the data warehouse in fact tables, dimensions and bridge tables. All the
objects that reside in the data mart need to be pure Kimball objects; there is no space for
ambiguity.

e Transform historical tables form the data warehouse in potential slowly changing dimensions. This
is not mandatory. We can build both a standard dimension and/or a slowly changing dimension
from the same entity in the data warehouse. The choice is up to the user and, thanks to the
existence of the data warehouse, can be easily changed in the future.

e Add surrogate keys to all the dimensions. We need to do it because the keys of the data warehouse
(which are natural keys) are no longer unique, due to SCD handling.

e May rename some columns in order to make their name more “user friendly”, where we mean by
“user” the end user.

e Computes some columns that can make easier the usage of the data marts. If, for example, the
user wants to browse resellers using the “month of the last order”, we will compute the value and
its description during the data mart ETL phase. There is no reason at all to maintain this information
in the data warehouse, because it can be easily gathered using views or SQL statements. Because
the information needs to be present in the reseller dimension, we add it to the dimension and
compute it from the orders table of the data warehouse.

There is only one thing that we cannot do in the data mart ETL phase: gather data from sources different
from the data warehouse.

Data marts are a derivation of the data warehouse, they will always contain less information than the data
warehouse. They will never expose more information than those present in the data warehouse. They
might change the granularity of the facts, they may filter some dimension removing useless rows and/or
columns, but they cannot add any source of information.

The reason is very simple: if some information comes from external sources directly into the data marts,
then no other data mart will ever be built using the same information. It will be a complete failure of the BI
solution if a user will ever show a report containing information that are not available and might be in
contrast with reports produced by other people using the same data warehouse.

If a datum is shown in a report, then it must come from the data warehouse. If somebody shows the sales
in a year, then he must have caught that information from the one and only source of information that
contains the yearly sales: this is the data warehouse. If this condition is not enforced, then the data
warehouse will be useless, as a central database holding the one and only truth.

Sooner or later, the user will ask to integrate some information in the cubes and we might think that the
easiest way of adding them is to integrate them in a specific data mart, simply because we are told that this
information is “only used by users of this cube”. Beware of that: it is never true. Users will show their
reports in meetings where they are used to discuss the future of the company. It is crucial that the same
information is available to all users. They might decide to ignore it but, if somebody ever uses that
information, they must be able to add it to their specific cubes.

SURROGATE KEYS HANDLING

Even if the reader may think that we are fan of views, in our model there is a specific point where we do
not use views but prefer direct SQL coding. This place is the Lookup component, whenever it is needed only
to resolve natural keys into surrogate ones.

If we look at the Fact Currency Rate data flow in the data mart ETL phase, we will find the lookup of the
currency that looks like this:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 33

~ & Lookup Transformation Editor = | B)

This transform enables the performance of simple equi-joins between the input and a reference data set,

Reference Table | Colurnns | Advanced

Specify a data source to use, You can select a table in a Data Source Wiews, a table in a database connection, or the results of an
S0L query.

OLE DB connection manager:
O v MNew...

) Use atable ar a view:

e,
@) Use results of an SQL queny
SELECT q Build Query...
ID_Curreniy, o
CurrencyCode
FROM Browse...

Common.Dim_Currency

Parse Query

Preview..,

l Configure Error Quiput.., 0K l l Cancel] [Help

L

IMG (0136): Lookup of surrogate keys do not use views

In the query, we do not use any view, we directly access the Common.Dim_Currency table and use its
columns to build the lookup table.

The reason for which we do not use views in this case is very simple: there is no need to do it. Views are
extensively used in our model to declare dependencies between different phases and/or entities of the ETL
process. However, for surrogate keys, this dependency is already very clear by the fact that the Fact
Exchange Rate table has a foreign key that points to the Dim Currency table. It is so evident that there is a
dependency between these two items that it would be academic to enforce it with a view.

The lesson here is very simple: views are a powerful means of documenting dependencies but we use them
only when we think that there is the need to do it.

DUMMY VALUES HANDLING

Whenever an incorrect lookup is found during the ETL of fact tables and/or dimensions, we need to assign
an “unknown” value to that link. Even if NULLable columns are acceptable in the data warehouse, they are
not in the data marts.

In order to make it easier to get these dummy values from the data mart, we normally build a view that
gather all these values from the data mart and returns them all to the caller. It is up to the caller the
decision about which of these columns to take or not.

CREATE VIEW GetDummyValues AS
SELECT

ID_Account_Dummy = (SELECT ID_Account FROM Financial.Dim_Accounts WHERE AccountCode = -1),
ID_Organization_Dummy = (SELECT ID_Organization FROM Financial.Dim_Organization WHERE OrganizationCode = -1),
ID_Department_Dummy = (SELECT ID_Department FROM Financial.Dim_Departments WHERE DepartmentCode = -1),
ID_Currency_Dummy = (SELECT ID_Currency FROM Common.Dim_Currency WHERE CurrencyCode = 'N/A"),
ID_Date_Dummy = (SELECT ID_Date FROM Common.Dim_Date WHERE ID_Date = -1),
ID_Scenario_Dummy = (SELECT ID_Scenario FROM Financial.Dim_Scenario WHERE ScenarioCode =0),
ID_SalesChannel_Dummy = (SELECT ID_SalesChannel FROM Sales.Dim_Channel WHERE SalesChannelCode = '),
ID_SalesReason_Dummy = (SELECT ID_SalesReason FROM Sales.Dim_SalesReasons WHERE SalesReasonCode = -1),
ID_Promotion_Dummy = (SELECT ID_Promotion FROM Sales.Dim Promotions WHERE PromotionCode = -1),
ID_SalesTerritory_Dummy = (SELECT ID_SalesTerritory FROM Sales.Dim_Territory WHERE SalesTerritoryCode = -1),

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 34

ID_Employee_Dummy = (SELECT ID_Employee FROM Sales.Dim_Employees WHERE EmployeeCode = 'N/A"),
ID_Geography_Dummy = (SELECT ID_Geography FROM Common.Dim_Geography WHERE GeographyCode = -1),

ID_Customer_Dummy = (SELECT ID_Customer FROM Sales.Dim_Customers WHERE CustomerCode = 'N/A"),
ID_Reseller_Dummy = (SELECT ID_Reseller FROM Sales.Dim_Resellers WHERE ResellerCode = 'N/A"),
ID_Product_Dummy = (SELECT ID_Product FROM Products.Dim_Products WHERE ProductCode = 'N/A")

This “tip” might be very useful in ETL packages because it gives the programmer several advantages:

e The place where to declare a dummy value is only one; no SQL code will be sprinkled over the
packages to get dummy values.

e |f the programmer wants to check if all dummy values are defined he can simply look at a simple
view

e The query to get dummy values is always “SELECT * FROM GetDummyValues”; it is up to the single
task to decide what to get, adding rows to the resultset of the task.

As this query is very fast, it is possible to call it several times, whenever a dummy value is required, without
worrying about performances.

Dummy values are stored in variables and, at the end of each flow, a derived column transformation
handles the assignment of dummy values to all the columns that need a default value.

These variables are always local to the sequence container that loads a specific dimension/fact table. This
makes it very easy to move sequence container from one place to another inside of the package, because
each container is — in some way — self-contained. Using this technique, the SSIS programmer need to worry
about real dependencies between facts and dimensions and does not need to handle dependencies
generated by variable usage.

As usual, a picture is worth a thousand words:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 35

]
g—b Financial Dimensions

»

]
g_b Dirn Departments

»

]
? DIM Organization

»

M Departments
Step 1

I

Get Durmny
Department

[
|

I

Departments
skep 2

{E

Departmens are loaded
from the departments in
the dwh, the two steps
are needed in order to
rebuild the parent/child
hierarchy using ID
instead of natural keys.

DIM Accounts

™

»

| |
h Accounts Step 1

!

1 et Dumnmy

Eﬂ Account

!

L L
b Accounks Skep 2

Accounts are loaded
from the accounts in
the dwh.

The two steps are
needed in order to
rebuild the parent,/child
hierarchy using IDs
instead of natural keys

Get Durnny
Currency

[
|~

I

Organization
Step 1

2=

!

lll et Durmnmy

Eﬂ Organization

!

lM Qrganization
Step 2

Organization reference
currencies so we need
to get first the dummy
currency, pefrorm the
first step of the ETL

and then get the dummy
organization and perform
the second step of the
ETL to handle the
parent,/child hierarchy
on organizations

j'vH_I DIM 5 i
i CENArio

Fa)
Fa

L L
b Dim Scenario

Dim Scenario is very
simple, we included it
into a sequence
container for esthetic
reasons only

IMG (0140): Sample usage of GetDummyValues

Using this technique, we call the view five times in this sequence and each time we take only the needed
dummies. For example, look at the Dim Organization sequence container: during the first step, we need the
dummy value for currencies, because organizations refer to currency and, in case of failure, the task need
to use the dummy currency. Since no dummy organization might exist before the end of step 1, we need to
load the dummy organization after step 1. However, this is easy, we just use the same code as before
changing the result set. Moreover, all the variables used by the containers are local and the SSIS
programmer is free to move each container elsewhere being sure that he is working in a safe mode.

CUBE IMPLEMENTATION

The final step to produce the results for our customer is that of producing the fact and dimensions that will
be shown to the user.

DATA SOURCE VIEW

The first step in the creation of an SSAS solution is to build a data source view. The data source view will
use only the views defined in the data mart database. Views are designed to show star schemas to the
solution.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 36

The careful reader should remember that, in the sales cube, the Geography dimension seemed to be used
as a snowflake with the Customer dimension. The snowflake exists only at the database level and for
performance reasons. From the cube point of view, there is no snowflake at all. In fact, the
CubeSales.Customers view will resolve it performing a join between the two dimensions. This view exposes
to the cube a simple Customer dimension where the columns coming from the Dim_Geography table
becomes regular attributes.

In the following picture you can see that the structure shown in the data source view is a perfect star
schema. There are no relationships between Geography and Customers. Moreover, Geography is not
present in the data source view because there are no fact tables using it.

[l Date {CubeComman.Da. ..
¥ ID_Date =
Diate [l Promotion (CubeSales.Fr...
DayMumberOfweek ¥ ID_Promnation
ol DayhumberOfMonth EnglishPromotion
[l SalesReasans (... DayMumberofyear FrenchPromokion
¥ ID_SalesReason WeekMurmberOFyear SpanishPrormation
SalesReason MonthMurmberOf Year MaxQuanticy
SalesReasonType CalendarQuarker MaxQuartityDesc
[l Products (CubeSale. .. CalendarQuarterofy .., MinGuantity
? ID_Product CalendarQuarterDesc MinQuantityDesc
Productkey EnglishPromokionType
CateqgaryCode FrenchPromotionTvpe
Category SpanishPromotionType
subcategoryCads EnglishPromotionCategary
subcategary P ey 51 Sales (CubeSales, Sales) p [renchPromotionCategory
ClassCode 7 ID Factooes SpanishPromotionCategory
Class ¢ ID:DateOrder DiscountPercent
Calor ID DateDue StartDate
DaysToManuFackure _ . startDateDesc
DeslarPri ID_Dateshipment EndDate
calerPrice
ListPrice 1 iy {0, [y ;g—sf;:g:::”e' EndDateDesc
Modeliame ¥ ID_Customer D Product
EnglishProductMame Custamer I Reseller
SpanishProductiame ity D Customer
FrenchProductMame CommuteDistance ID_SalesTerritory [l Reseller (Qubesale. .
PraductlineCode DateFirstPurchase ID_Employee ¥ ID_Reseller =
PraductLine DateFirstPurchaseDesc ID_Currenc Address
RearderPaint EnglishEducation Sal_esnmouni AnnualRevenue
SafetyStockLevel FrenchEducation OrderCuantit | Employee (CubeSales.E... Annuslssles
Size SpanishEducation o i G BankMame
! . . Extendedamount ¥ ID_Employee .
SizeRange EnglishCecupation BusinessType
] - TaxAmaunt I0_ParentEmplayee -
StandardCost SpanishOccupation . Ciky
. Freight Cosk Employes
StyleCode FrenchOccupation) CountryCode
} DiscountArmount BirthDrate N
Style Emailaddress FirstOrderear
: UnitPrice Department Mame N
Weight Gender P FirstOrdervearDesc
! UnitPriceDiscountPercent Emailaddress
Weight Desc HomeCwner LastOrderiear
) TotalProductCost EmergencyContactMame
ScdDateStart MaritalStatus gency LastOrderyearDesc
StandardProductCost EmergencyCantactPhone
ScdDateEnd MumberOfiCarsOwned gency LastOrderManth
) SalesOrderMumber Gender
ScdDateStartDese MumberOfChildreAtHome ; LastOrderMonth,..
SalesCOrderLineMumber HireDate
ScdDateEndDesc Phone MurnberOfEmplay
; RevisionMumber HireYear "
Scdskatus TokalChildren PostalCode
Carrier Trackinghurmber BaseRate N
YearlyIncome CustomarPOMUmbE MaritalSkat StateProvince
CountryCode Par::a ans MinP awmentamount
PostalCod,a P:znreequency MinPaymentType
StateProvince ; OrderFrequency
EnglishCountry SalarizdFlag ProductLine
SpanishCountry ?::espersonFlag YearOpened
FrenchCountr e]
L \—, ScdDatestart Engll;hCountry
SpanishCauntry
sedDateEnd FrenchCourntr
ScdDateStartDesc L Z
ScdDateEndDesc
ScdStatus

[l SalesChannel (...

[l SalesTerricory (Cub...

) Currency (C...

¥ ID_salesChannel

¥ ID_SalesTerritory
SalesChannel

SalesTerritorvR egion
SalesTerritoryCountry
SalesTerritorwGroup

¥ ID_Currency
CurrencyCode
Currency

IMG (0137): Fact Sales Data Source View

The main goal of the data source view is to let the SSAS analyst have a clear view of the data structure in
the data mart that he needs to use to build the cube. For this reason, he will only see the meaningful
relationships between facts and dimensions and does not have to worry about strange and/or technical

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 37

items. The same applies for columns: if a column is not used in the SSAS solution, the view will hide it in
order to make the full diagram easier to understand.

To appreciate the differences in design, compare the previous picture with the data source view for
“Internet Sales” in the original SSAS solution:

=@ DimCurrency

¥ Currencykey
Currency Code {Currencyd, ..

CurrencyMarne
F
[T CimPraduct {dbo.DimPrad... L
¥ Productkey -
Productalternatekey
PraductSubcategorykey [F] DimPromation (dba.DimPro. ..
WeightUnitMeasureCode - -
SizelnitMeasureCode i Eromo:?oaneyd P =
) romotion Code {Promo. ..
EnglishProductiame [T FactInternetSales (dbo.Fa... DiscountPet
SpanishProductiMame 3 SalesOrderiumber "
FrenchProducthiame { SalesOrderLineMumber i
StandardCost 4 Productke E'_diate
FinishedGoodsFlag ¥ MinQky
Colar OrderDatekey MaxQty
) . - DueDaterey EnglishPromationlarne
ShipDatek ey SpanishPromotiontarne
Customerkey FrenchPromaotionMarne -
Promationk ey
r Currencykey
[T DimProductSubcategory (d... SalesTerritorykey
¥ ProductSubcategorykey RevisionNun?ber
ProductSubcategoryalterna. .. On.:lerguantlty
EnalishProductSubcategory. .. UnitPrice
SpanishProductSubcategor.,.. ExFent.:Ied.\?mount
FrenchProductSubcategory. .. UﬁltPrlceDlscountPct
Productiat K DiscountAmount
rodust-aLegoney ProductStandardCost [T DimSalesTerritary {(dbo.Dims. ..
TotalProductCast ¥ SalesTerritorykey
SalesAmount SalesTerritoryAlternatekey
- F Taxhmk " SalesTerritoryRegion
[DimProductCategary (dba.D... Freight SalesTerritoryCountry
¥ ProductCategorykey - CarrierTrackinghumber SalesTerritoryGroup
ProductCategoryalternat. .. LiskarmerBrillmber hd i
EnglishProductCategoryh...
SpanishProductCategory. ..
FrenrhPraductC atennrbl h
F v ¥
[T CimTime {dba.DimTime) [T DimGeography (dbo.DimGea. .
7 Timekey - ¥ GeographyKey
4
Date (FullDatedlernatekey) r City
DayMumberOfwesk, [DimCustamer (dbo.DimCusta. .. StateProvinceCode
DayMumberOfMonth 3 Customerke " StateProvinceMame
DayMumberOfear ¢ Geoaranh K:; CountryRegionCode
WeekNumberOfear Custgomirxlte:’nateKe PostalCode
MonthMurnberOfear Firsthame i EnalishCountryRegionMarme
CalendarQuarter MiddieMame SpanishCountryRegionhame
Calendaryear LastName FrenchCountryRegionMarme
CalendarSemester Namestyle SalesTerritorykey
FiscalQuarter
) > BirthDate
Fiscalfear ;
) MaritalStatus
FiscalSemester)
Suffix
CalendarQuarterDesc Gender
|| FiscalQuarterDesc)
Emnailaddress
CalendarSemesterDesc
X ‘earlyIncome
1| FiscalSemesterDesc .
) TotalChildren
EnglishDayMameOf week, .
. MumberChildrenatHome
SpanishDayMameCPwesk
HouseownerFlag
FrenchDayMameOr Week
) MNumberCarsOwned
EnglishMonthkame X
. AddressLinel
SpanishMonthMame .
AddressLinez
FrenchMonthMarme Phane
i SimpleDrat b
-‘:l mpeose DateFirstPurchase
FullMarme
MaritalStatusDesc
GenderDesc
How e e uansr T hd

IMG (0138): Original Internet Sales Data Source View

There are several problems in this data source view:

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 38

e The relationships between product, product subcategory and product category are too complex,
involving three tables. Moreover, it is not evident, from the data source view, which columns of the
various tables should become attributes of the product dimension and which should not.

e The fact table can reach Sales Territory following two different paths:
o Directly with SalesTerritoryKey
o Indirectly, through Dim Customer and then Dim Geography
Therefore, we have at least three different options to expose Dim Territoy to the user:
1. Two Dim Territory role dimensions, one for the fact table and one related to customers

2. Move Dim Territory attributes in customers and expose only the territory related to the
fact table

3. Create a Geography dimension that exposes Dim Territory columns as attributes and also
relates this dimension to customers.

The third solution is the one implemented in the Adventure Works cube but, by a first look at the
data source view, it is not clear what the analyst should do. The existence of more than one option
probably leads to confusion. Worse, it is not evident in the data source view when the cube is first
developed and it will never be evident when we will look at it in the future. In order to understand
the usage of Dim Geography in the original cube, the authors had to spend some time diving into
the dimension usage of the cube to double check why Dim Geography was there.

The usage of views solves all these problems at the database level. Views show a clear structure that leads
to no doubt. Clearly, because we are not using tables, the BIDS wizard will not recognize any relationships
inferring them from the foreign keys and the SSAS analyst needs to rebuild relationships by itself. Even if
this leads to some work during the first phase of cube development, this effort will be compensated in the
future, when the cube will be updated or analyzed by someone else.

Another example can be that of the financial data source view, where we show both diagrams side by side.

[Z] DimScenario {dbo Dim3cena... [DimTime: (dbo.DimTirme)

¢ Scenariokey 7 TimeKey N
seenariohiame Date (FulDsteAkermate. .

Dayhumberfwesk

[0 pimDepartmertraup (dbe... Dayhumbercfionth

7 DepartmentGroupkey DayhiumberCFtear
ParentDeparmentGroUpkey WeekhUmberOfvear
DepartmentGrauphiame ManthhumbercFrear

CalendarQuarter

Calendarvear

[Accounts (CubeFin. .

1D_account
1D_ParentAccount
Custorieribiers
UnaryOperator
Account
ccourtHumber

Timekey CalendarSemester hecourkType

Orgarizatiorkey Fiscaluarter [FactAmaunts (€.,
DepartmentGroupkey Fiscalfear - ID_Account:
{2 DimAccount {dbo.DimAccount) narnok 10_Crganization

AccountKe: .
7 Accountkey M " ID_Scenario
moUnE
ParentAccountey ID_Date
AccountCodedlternatekey

[l Department (CubsFin. ID_Department
ParentAccountCodedlternat. .. 7 10 Department [~ Amount
ActountDescription ID_ParentDepartment

AccountType = DimCrganization Department

Operator 2 Crganizationkey -

Customiembers ParentOrganizationkey

ValueType PercentageGFOwnership
CustomiMemberOptions CrganizationName

Currency Code (Currency... v

[Scenario (Cub..
] Date (CubsCommon.Dats)
7 1D Date
Date
DayhumberOfiNesk
DayhurberOfianith
DayhumberOffear
Frear
MonthilurberOF fear
CalendarGuarter
CalendarQuarterCFyear
CaendarQuarterDesc

7 10 _Scenario
Scenatio

f [FactFinance (dbo. FactFi.

[l Organieation (CubeFin. ..

 ID_Organization
ID_ParentCrganization
Organization
CurrencyCode
Currency

27 DimDestinationCurrency

7 Currency Key (Currencyke
Currency Cade (Currencydlt...,
Currency Mame (CurrencyN.

IMG (0139): Financial Data Source View

The main difference is in the Organization dimension. The two tables (dim organization and dim destination
currency) have been substituted with only one view (Organization). Using views, it is clear from the data
source view that there will be no currency dimension in the financial cube. The code and name of the
currency dimension will become attributes of the organization dimension.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 39

SALES CHANNEL

In the original solution, sales were divided between internet and reseller. This leads to a proliferation of
fact tables and to a very complex structure of the dimension usage panel of the solution.

In order to make the cubes easier for the final user, we decided to merge the sales and add a dimension to
separate them. We called this dimension “Sales Channel”; it contains only two rows: “INTERNET” or
“RESELLER”.

Whenever possible, these kinds of simplification lead to a simpler cube structure and, in the Bl world,
simpler normally means “more valuable”, because users will accept more easily the introduction of the Bl
solution in their analysis world.

PROMOTIONS

The promotion dimension is straightforward; the only problem is that the original one has a hierarchy that
is not natural. The problem is that there should be no relationship between the type of the promotion and
its category. Even if an analysis of the data shows that the relationship seems to exists, we suppose that the
user decided that the relationship is not guaranteed to be true.

JE Dimension Sktructure]Té Translations |ki Browser

palE-x Bm@aa-ty-

Attributes Hierarchies and Levels Data Source Wiew

2 ﬁiﬂm?t":'n Ay Promations
E Discount Percent « Category w B DimPromation (dbo. CimPro
E End Date N { Promotionkey
85 Mayx Quantit “ Type ¥
- Q . Y Pramation Cade (Promotionglte. .
i Min Quanktity & Promaotion ¥ DiccauntPet
[= 85 Promotion
X “new level = StartDate
¥, Discount Percent ErdDat
%4 End Date Mltl :IE
% Max Quantity M::fQ:
. Min Quanktity T_u:u creake a new En Iishi‘ru:umu:utiu:unName
¥ . Promotion Category higrarchy, drag a d ; :
%_ Promotion Type colurnn or aktribuke SpanishPromotioniame
1" Start Date here, FrenchPromationtame
=l . .
<new attribute relationship = Enghs.h:::uml:ut:?n?pe
= 3 pomsioncomor s onounr
<new attribute relationship = EndlishP . cyf
; nalishPromationC ategary
= 3 Promotion Type : _
=new attribute relationship = gpanlshl';PrDmlemréCitEgDry
renchPromationC ategary
i StartDate |# DiscountPctDesc
:| MaxQkyDesc
3| SimpleEndDate
:| SimplestartDate

IMG (0123): Original Promotion Dimension

As we do not want to include any non-natural hierarchy in the solution, we create a new attribute (called
Type and Category) that contains both the type and the category in its key column. Doing this, we created a
new attribute that guarantees that there exists the required relationship between “Category” and “Type
and Category”.

The new attribute will have the Promotion Type as its name column. It will use a key with a higher
granularity than its description. This is the required behavior in order to guarantee the correctness of the
relationship.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 40

JE Dirnension Skruckure]% Translations |T£i Browser

PalE-Xx ERRAQ- -

Attribukes Hierarchies and Levels Data Source View

w Promotions |¥
22 Discount Percent @l Promotion (CubeSales.Pro. ..
T « Categor ¥
i End Date e ¥ 7 ID_Promation
83 Max Quantity = Type ¥ EnglishPromation
1] . .
EH Min Quantity & Promation ¥ FrenchPromation
SN Pm"“'?'t":"" “niew level = SpanishPrormation
¥ Discount Percent MaeCiuantity
T4 End Date _ MaxuantityDesc
- Mﬁx QuanFlty MinCantity
¥ Min Quankity To create a new MinciuantityDesc
% Promotion Twpe hierarchy, drag a " i
‘l‘_- Shart Date column or attribute EngllshPranthnTypE
= here. FrenchPromakionType
%, Type and Cateqory SpanishPromotionType

«=new attribuke relationship =
= =5 Pramation Categary

«=new attribuke relationship =
= =5 Pramation Type

EnglishPromatiomategory
FrenchPromationZategory
SpanishPromotionCategory

: |) DiscountPercent
=new attribute relationship =
. P StartDate
28 Start Date StartDatelesc
= &5 Type and Category EndDiate

¥ . Promotion Categary EndDateDesc

<new attribuke relationship >

IMG (0124): New Promotion Dimension

We will hide the technical attribute (the user will be able to directly browse only the Promotion Type and
Promotion Category attributes) but we will use it to define the hierarchy, renaming it to “Type”.

When the user will browse the cube using the hierarchy, he will see the “Promotion Type” but —in reality —
he will be browsing the “Type and Category” attribute.

When we complete the work applying the correct attribute relationships, the hierarchy becomes natural
and the user will appreciate a huge increment in the browsing speed.

In the example of AdventureWorks this technique is not really useful, due to the very small amount of data
that is processed by the cube. However, the rule of thumb is to avoid any non natural hierarchy in the
whole solution. Following this rule will let us make the cube grow without suffering performance problems.

DOCUMENTATION OF THE WHOLE PROJECT

If the reader has been patient enough to reach this chapter, he will be rewarded with the best capability
offered by our methodology: documentation.

We have stressed throughout the whole chapter the importance of using views to make interfaces between
levels and the need to document with views each step of ETL phase, from the OLTP up to the final cube
production. The main reason for doing so is that views can be analyzed by many third part tools that can in
turn generate automatic documentation for a database, in the form of HTML and/or help files. This auto
generated documentation process relies on the database structure so we know that anything written at the
database level can be easily documented.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 41

We decided to use two products so famous that they do not need any advertising. We are pretty sure that
similar products from other software house will produce similar output. The point here is not to choose
product A instead of product B but to understand that, using views to declare table dependencies, you are
making the dependency tracking possible.

As you surely know well by now, in the Data Warehouse database we will have a view called
SalesDataMart.Dim_Products that produces the input for the Dim_Products dimension in the
SalesDataMart data mart.

If we ask RedGate SQL Dependency Tracker to analyze this view, we will get this chart in a snap, just the
time to select the item to analyze:

ProductsHistory Styles

reve
DTEML‘

Productiey Clacess

ProductStyleKey

P e

1 indexes ProductClassKey
I

StandardCost ProductClass
ProductDescriptions

DTab\E

ProductDescriptionkey
CultureKey

Culture
ProductDescription

1 indexes 1 indexes

1 indexes FinishedGoods

DTab\e

FinishedGoodsFlagKey
FinishedGoods
Dim_Products

1 indexes
Bver

ProductCode
ProductCategoryCode
ProductCategory. —
ProductSubCategoryCode
ProductSubcategory DT —
ProductLineCode
ProductLine
ProductStyleCode ProductKey
ProductStyle ProductSubcategoryKey
ProductClass FinishedGoodsFlagKey
ProductClassCode ProductLinekey
SizeRanges size ProductStyleKey
SizeRange ProductClassKey
DTame EnglishProductName ProductDescriptionkey
ProductDescriptionKey SizeKey
EnglishProductDescription WeightUnitMeasureCode
ey c SizeUnitMeasureCode
SleeRange ProductName
DateStart StandardCost
Lindexes DateEnd Color
StandardCost SafetyStockLevel
ListPrice: ReorderPoint
DealerPrice ListPrice
SafetyStockLevel Weight
DaysToManufacture DaysToManufacture
Reorderpoint DealerPrice
Weight ModelName

adv_own[Hl 1 indexes

Adv_owh [l

Categories

DT&ME

ProductCategorykey
ProductCategoryName

1 indexes

Adv_owh[l]

Photos
Subcategories
reve

DTable i

DTablc ProductKey
ProductSubcategorykey ThumbNailPhoto
ProductSubcategoryName ProductLineKey Efug:sg:t\:hommemme

P K
roductCategoryKey ProductLine LargePhotoFileName

1 indexes
1 indexes 1 indexes

adv_owh[l

IMG: SQL Dependency Tracker analysis of Dim_Products

It is clear for anybody, whether a technician or not, how to read this chart and the kind of dependency it
shows. Moreover, as this chart can be generated in a few clicks and its sources is exactly the same source of
the ETL process (i.e. the view) we can be pretty confident that the documentation will always be aligned
with the source.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 42

The other product used is Apex SqlDoc. SglDoc has the capability to analyze a whole database and generate
a help file that contains the documentation for the database’. Using SqlDoc we can analyze the same view

and get two different pieces of information:

Top Custom Text

& View: Adv_Dwh.SalesDataMart.Dim_Products
= Collapse All

*| Statistics

+ Objects that depend on SalesDataMart.Dim_Products

= Objects that SalesDataMart.Dim_Products depends on

Object Name Object Type Dep Level
T Products.Products Table 1
T Products.SubCateqories Table 1
T Products.Categaries Table 1
T Products.Lines Table 1
T Products.Stvles Table 1
T Products.Classes Table 1 s
T Products.SizeRanges Table 1 1
T Products.ProductDescriptions Table 1
T Products.ProductsHistory Table 1
T Remap.FinishedGoods Table 2
Total 10 object(s)
= Column Level Dependencies
Object Name Column Object Type
7] Products.Products Productiey Table
7 Products.Products ProductSubCategorykey Table
T Products.Products ProductLineKey Table
Tl Preducts.Products ProductStylekKey Table
7 Products.Products ProductClasskey Table
T Products.Products SizeKey Table
Tl Preducts.Products ProductDescriptionkey Table
T Products.Products Color Table
T Products.Products ModelName Table
T Products.Products SafetyStockLevel Table
T Products.Products DaysToManufacture Table
T Products.Products ReorderPoint Table
T Products.Products Weight Table
T Products.SubCateqories ProductCategorykKey Table
T Products.SubCategories ProductSubcategoryName Table
T Products.SubCategories ProductSubcategorykey Table
7] Products.Categories ProductCategoryName Table
T Products.Categories ProductCategoryKey Table
T Products.Lines ProductLine Table
T Products.lines ProductLinekey Table
T Products.Styles ProductStyle Table
T Products.Stvles ProductStyleKey Table
T Products.Classes ProductClass Table
T Products.Classes ProductClasskey Table
T Products.SizeRanges SizeRange Table
7] Preducts.SizeRanges Sizekey Table
T Products.ProductDescriptions ProductDescription Table
T Products.ProductDescriptions ProductDescriptionKey Table
T Products.ProductDecscriptions Culturekey Table
T Products.ProductsHistory DateStart Table
T Products.ProductsHistory DateEnd Table
T Products.ProductsHistory StandardCost Table
T Products.ProductsHistory ListPrice Table
™ Dradicte Deadicteblictan: Noslarbrica Tahla i

1

IMG: Apex SQL Doc Analysis of Dim_Products (Textual analysis)

In the first image we can see that the tool is able to get single column dependencies, letting us document
from where each single column of the view comes from.

The next picture shows something similar to the graphical representation of Dependency Tracker:

! This feature is covered by RedGate products too but we have chosen to show Dependency Tracker from RedGate, which produces a great

graphical result and SqlDoc from Apex, which produces a great Help file. Please remember that our goal is not to that of advertize any
product but just to show how to obtain good results.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 43

Products. SizeRanges

Products ProductDescriptions

>
']
-

-
e
.

Products Styles e b SalesDataMart. Dim_Prod)

Py

-~

[Select

p L
i Products. Subcategories '

IMG: Apex SQL Doc Analysis of Dim_Products (Graphical Analysis)

It is clear that these charts are very useful to add to any documentation we will ever produce for the BI
solution. It will also help the reader to understand the flow of data of our ETL procedure.

So, even if we cannot say that using views we can totally avoid the need for documentation of the BI
solution, we can say for sure that the usage of views, with the aid of some third party tool that analyzes
them, will produce a good level of automated documentation. Moreover, the charts produced by automatic
tools will be of great value when added to the standard documentation of the Bl solution.

SQLBI Methodology at Work — Draft 1.0 - send feedback to dedicated forum on www.sqlbi.com 44

	sqlbi-methodology-at-work-draft-1.0.pdf

