
Alberto Ferrari
Marco Russo

S E C O N D E D I T I O N

Improving DAX performance in
Microsoft Power BI and Analysis Services

OPTIMIZING

S A M P L E

Optimizing DAX
Improving DAX performance in
Microsoft Power BI and Analysis
Services

Second Edition

Alberto Ferrari and Marco Russo

Copyright © 2024 by Alberto Ferrari and Marco Russo

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. Microsoft and the
trademarks listed at www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general are
trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, the publisher, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Publisher / Editorial Production: SQLBI Corp., Las Vegas, NV, Unites States

Revision: 2 (April 30, 2024)

Authors: Alberto Ferrari, Marco Russo
Copy Editor: Claire Costa
Cover Designer: Daniele Perilli

ISBN: 978-1-7353652-2-0
Library of Congress Control Number: 2024903659

iii

Contents at a Glance
SECTION 1 CORE CONCEPTS
CHAPTER 1 Introduction (S01.M01) ... 3
CHAPTER 2 Introducing optimization with examples (S01.M02) 11
CHAPTER 3 Introducing the Tabular query architecture (S01.M03) 33
CHAPTER 4 Using the Power BI Desktop performance analyzer (S01.M04) 51
CHAPTER 5 Using DAX Studio (S01.M05) .. 61
CHAPTER 6 Introducing query plans (S01.M06) .. 73
SECTION 2 THE FORMULA ENGINE
CHAPTER 7 Understanding the DAX Formula Engine (S02.M01) 83
CHAPTER 8 Understanding query plans (S02.M02) ... 129
CHAPTER 9 Optimizing the formula engine (S02.M03) ... 167
SECTION 3 VERTIPAQ
CHAPTER 10 Understanding the VertiPaq engine (S03.M01) .. 203
CHAPTER 11 Understanding VertiPaq relationships (S03.M02) 261
CHAPTER 12 Analyzing VertiPaq storage engine queries (S03.M03) 287
CHAPTER 13 Optimizing common DAX constructs (S03.M04)...................................... 337
CHAPTER 14 Moving and applying filters to tables (S03.M05) 409
CHAPTER 15 Optimization examples for VertiPaq (S03.M06) 465
CHAPTER 16 Understanding security optimization (S03.M07) 523
SECTION 4 DIRECTQUERY OVER SQL
CHAPTER 17 Understanding DirectQuery over SQL (S04.M01)..................................... 565
CHAPTER 18 Optimizing DirectQuery over SQL (S04.M02) ... 597
CHAPTER 19 Optimization examples for DirectQuery (S04.M03) 673
SECTION 5 COMPOSITE MODELS
CHAPTER 20 Understanding composite models (S05.M01) .. 703
CHAPTER 21 Composite models optimization examples (S05.M02)............................. 733
CHAPTER 22 Understanding complex models (S05.M03) ... 769

v

Contents
SECTION 1 CORE CONCEPTS
CHAPTER 1 Introduction (S01.M01) ... 3

Prerequisites ... 3
Overview of the Tabular architecture ... 4
Structure of the training .. 5
Coding conventions .. 7
Companion content .. 8

Software prerequisites .. 8
Hardware prerequisites ... 9
Download demos .. 9
Sample code references ... 10

CHAPTER 2 Introducing optimization with examples (S01.M02) 11
Optimizing DAX .. 11
Optimizing the model .. 18
Optimizing composite models ... 26
Conclusions .. 32

CHAPTER 3 Introducing the Tabular query architecture (S01.M03) 33
Introducing the formula engine ... 33
Introducing VertiPaq and DirectQuery architectures .. 35
Introducing the VertiPaq storage engine ... 36
Introducing the DirectQuery over SQL storage engine 38
Introducing DirectQuery over AS .. 40
Introducing data islands and cross-island query resolution 42
Different types of models ... 47
Conclusions .. 49

CHAPTER 4 Using the Power BI Desktop performance analyzer (S01.M04) 51
Running Performance Analyzer .. 51
Understanding the numbers reported by Performance Analyzer 54
Optimizing queries or measures? .. 56
What can be optimized ... 57
Saving performance data .. 60
Conclusions .. 60

CHAPTER 5 Using DAX Studio (S01.M05) .. 61
Installing DAX Studio .. 61

vi

Introducing the metrics of a database .. 62
Introducing All Queries ... 65
Capturing Excel queries (MDX) ... 66
Introducing Load Performance Data .. 68
Introducing Query Plan and Server Timings ... 70
Conclusions .. 71

CHAPTER 6 Introducing query plans (S01.M06) .. 73
Introducing the logical query plan ... 75
Introducing the physical query plan .. 75
Introducing storage engine queries ... 77
Query plans in DirectQuery ... 78
Conclusions .. 80

SECTION 2 THE FORMULA ENGINE
CHAPTER 7 Understanding the DAX Formula Engine (S02.M01) 83

Understanding datacaches .. 83
Understanding materialization ... 90
Understanding callbacks ... 96
Formula engine with different storage engines ... 100
Understanding vertical fusion .. 100
Understanding horizontal fusion .. 105
Examples of formula engine calculations .. 110

Sales of best products .. 110
Top three colors ... 115

Measuring performance ... 118
Gathering important timings from the query plan .. 119
Analyzing query plans and timings ... 120

Year-to-date calculation of an additive measure .. 120
Year-to-date calculation of a non-additive measure.. 123

Conclusions ... 127
CHAPTER 8 Understanding query plans (S02.M02) ... 129

Query plan structure .. 129
Query plan operator types .. 131

Properties of ScaLogOp ... 131
Properties of RelLogOp ... 132
Properties of LookupPhyOp ... 133
Properties of IterPhyOp .. 133
Properties of SpoolPhyOp .. 134

Interactions between the formula engine and the storage engine 134
Common query plan operators ... 138
Examples of query plans .. 140

vii

Comparing SUM versus SUMX ... 140
Comparing IF versus IF.EAGER ... 143
Filtering with DAX versus using relationships... 152
Understanding SWITCH optimization ... 157

Conclusions ... 166
CHAPTER 9 Optimizing the formula engine (S02.M03) ... 167

Optimizing datacache use ... 167
Sales of best products ... 173
Running total of sales and ABC analysis .. 180
Year-over-year customer growth as a percentage .. 189
Conclusions ... 199

SECTION 3 VERTIPAQ
CHAPTER 10 Understanding the VertiPaq engine (S03.M01) .. 203

Using VertiPaq Analyzer ... 203
Gathering vpax information with DAX Studio .. 203
Analyzing a vpax with VertiPaq Analyzer .. 205

Tabular data types .. 206
Introduction to the VertiPaq columnar database .. 207
Understanding VertiPaq compression .. 211

Understanding value encoding .. 211
Understanding hash encoding ... 213
Understanding run-length encoding ... 214
Using VertiPaq Analyzer to understand VertiPaq compression 216
Understanding re-encoding .. 219

Understanding segmentation and partitioning .. 221
Understanding the importance of sorting .. 229
Understanding VertiPaq relationships .. 234
Understanding attribute hierarchies ... 239
Optimizing VertiPaq models: examples ... 242

Sales amount versus quantity and net price ... 242
Storing currency conversion data ... 247
Date time versus date and time .. 256

Conclusions ... 260
CHAPTER 11 Understanding VertiPaq relationships (S03.M02) 261

Regular, unidirectional one-to-many relationships ... 262
Regular, bidirectional one-to-many relationships ... 267
Regular, one-to-one relationships ... 275
Limited, many-to-many cardinality relationships ... 278
Conclusions ... 285

viii

CHAPTER 12 Analyzing VertiPaq storage engine queries (S03.M03) 287
Analyzing simple xmSQL queries ... 287
Introducing basic VertiPaq functionalities .. 290
Introducing batches ... 291
Understanding internal and external SE queries .. 294
Understanding distinct count in xmSQL .. 297
Understanding VertiPaq joins and filters .. 298

Introducing VertiPaq joins ... 298
Introducing bitmap indexes ... 299
Introducing reverse joins .. 304

Understanding VertiCalc and callbacks.. 308
Understanding CallbackDataID ... 309
Understanding EncodeCallback ... 314
Understanding LogAbsValueCallback .. 319
Understanding RoundValueCallback ... 321
Understanding MinMaxColumnPositionCallback .. 324
Understanding Cond.. 327

Understanding the VertiPaq cache .. 329
Choosing the correct data type for VertiPaq calculations 332
Conclusions ... 335

CHAPTER 13 Optimizing common DAX constructs (S03.M04) 337
Optimizing nested iterations .. 337
Understanding the effect of context transition .. 349
Different ways of performing a distinct count .. 353
Optimizing LASTDATE calculations .. 365
Avoid using SUMMARIZE and clustering .. 373
Optimizing division by checking for zeroes ... 379
Reducing the extent of the search by removing blanks 386
Optimizing time intelligence calculations ... 395
Distinct count over large cardinality columns ... 401
Conclusions ... 408

CHAPTER 14 Moving and applying filters to tables (S03.M05) 409
Different filters in CALCULATE ... 409

Analyzing single-column filters ... 410
Analyzing multiple-column filters ... 422
Analyzing filters over multiple tables ... 427

Understanding sparse or dense filters ... 428
Filter columns, not tables .. 431
Modeling many-to-many relationships ... 435

Testing the bidirectional model ... 438
Testing the star model .. 444

ix

Testing the snake model .. 447
Testing the advanced snake model .. 457

Conclusions ... 463
CHAPTER 15 Optimization examples for VertiPaq (S03.M06) 465

Reducing nested iterations ... 465
Optimizing complex filters in CALCULATE .. 472
Optimizing Fusion Optimization ... 476
Currency conversion .. 478
Optimizing cumulative totals ... 486
Average price variation of products over stores .. 494
Optimizing the number of days with no sales... 503
Computing open orders ... 510
Optimizing SWITCH and nested measures ... 516
Conclusions ... 521

CHAPTER 16 Understanding security optimization (S03.M07) 523
Testing security conditions and their performance impact 523
Understanding when and where security is enforced 524
Understanding cached bitmap indexes and embedded filters 528
Optimizing dynamic security .. 536
Optimizing static security on the fact table .. 544
Optimizing dynamic security on the fact table ... 552
Conclusions ... 562

SECTION 4 DIRECTQUERY OVER SQL
CHAPTER 17 Understanding DirectQuery over SQL (S04.M01)..................................... 565

Working with DirectQuery ... 565
Reading SQL code in this book ... 566
Reading the numbers in DAX Studio .. 568
Callback operations .. 570
Calculated tables ... 574
Calculated columns .. 574
How caching works in DirectQuery over SQL .. 576
Understanding latency to send queries to the remote server 577
Max number of rows in a data cache .. 577
Different types of relationships ... 578

Regular one-to-many relationships ... 578
Limited many-to-many relationships .. 582
One-to-one relationships ... 583

DirectQuery over SQL max parallel queries .. 583
Using different data islands .. 592

x

Introducing aggregations and hybrid tables ... 596
Conclusions ... 596

CHAPTER 18 Optimizing DirectQuery over SQL (S04.M02) ... 597
Building an SQL data model for Analysis Services .. 597

Designing indexes ... 598
Using columnstore indexes .. 601
Choosing column data types .. 603
Do not use Power Query transformations .. 607

Optimizing relationships .. 607
Choosing the best data type for relationships ... 608
Relying on referential integrity .. 610
Using COMBINEVALUES to implement multi-column relationships 615

Using aggregations .. 623
Introducing aggregations ... 623
Introducing VertiPaq aggregation and Dual storage mode 631
Designing aggregations for simple calculations... 635
Designing aggregations for row-level calculations ... 638
Designing aggregations for distinct counts .. 642
Aggregations are not VertiPaq aliases of DirectQuery tables 646
Manually activating aggregations in DAX ... 652
Using automatic aggregations ... 659

Using hybrid tables .. 659
Introducing hybrid tables ... 660
Reducing partition queries with DataCoverageDefinition 668
Hybrid tables and distinct counts .. 668
Creating hybrid tables with incremental refresh .. 670

Conclusions ... 672
CHAPTER 19 Optimization examples for DirectQuery (S04.M03).................................. 673

Optimizing LASTDATE calculations .. 673
Optimizing division by checking for zeroes ... 681
Optimizing time intelligence calculations ... 687
Computing distinct counts .. 695
Conclusions ... 700

SECTION 5 COMPOSITE MODELS
CHAPTER 20 Understanding composite models (S05.M01) .. 703

Introducing composite models ... 703
Understanding wholesale and retail calculations .. 705
Calculated tables ... 712
Calculated columns .. 712
Tracing remote queries .. 714

xi

Understanding relationships between tables .. 716
Understanding special DAX functions for composite models 720

Understanding GROUPCROSSAPPLY and GROUPCROSSAPPLYTABLE 721
Understanding DEPENDON .. 723

Splitting calculations between wholesale and retail ... 726
Conclusions ... 732

CHAPTER 21 Composite models optimization examples (S05.M02)............................. 733
Static segmentation ... 733
Budget and time intelligence calculations .. 748
Dynamic ABC analysis ... 759

CHAPTER 22 Understanding complex models (S05.M03) ... 769
Understanding the role of the formula engine in complex models 769
Calculated tables ... 773
Calculated columns .. 773
Relationships in complex models ... 780
Using SQL Server features to avoid multiple data islands 790
Using VertiPaq to snapshot expensive DirectQuery queries 794
Conclusions ... 803

1

Section 1
CORE CONCEPTS

CHAPTER 1 Introduction S01.M01 3

C H A P T E R 1 SAMPLE S01.M01

Introduction
This book is the written version of the Optimizing DAX video course (second edition) published by SQLBI.
While the PDF version is available to video course students, we decided to publish a printed version for
those who want a printed version or do not want to get the entire video course and prefer to study books.

Several years ago, we recorded and published the first edition of the Optimizing DAX video course. At
the time, Tabular was much simpler than it is today, and the DAX optimization was described in a few
chapters of “The Definitive Guide to DAX” book, including some details about the VertiPaq model. In the
first edition of that training, we did not cover – on purpose – DirectQuery optimizations. Indeed,
DirectQuery was not a real option at that time.

Over the years, Tabular has evolved, and its complexity is now much more significant. Microsoft
introduced a more usable version of DirectQuery, released composite models, and improved the DAX
engine by adding new optimization techniques. Moreover, as teachers, we increased our knowledge and
experience about the engine in the same period. When it was time to create a new training version, we
quickly discovered the amount of materials to teach was massive. Therefore, despite this being the second
edition of the Optimizing DAX video course, it is – in reality – a brand new training (and book) about the
state of the art of optimizing Tabular models.

An important note is that we wrote this content using Analysis Services 2022 and Power BI versions
available in 2023. Different engine versions might show different behaviors, for the better or the worse.
We will say this for the first time now and repeat it multiple times during the training: you must test any
of the optimization techniques we teach on your models and the version of the engine you are currently
using.

Prerequisites

The content of this book is advanced. As such, it certainly does not start from scratch. We take for granted
that the reader has an excellent knowledge of several topics:

• The DAX language. In the training, we never teach DAX concepts. Here, the goal is how to
produce efficient DAX code. We will write a lot of DAX code together, taking it for granted that
you will quickly understand the different formulas. If you are unfamiliar with DAX, we strongly
suggest the Mastering DAX video course, “The Definitive Guide to DAX” book, and practicing the
DAX language in your daily job for at least one year. Being proficient with DAX is an absolute
requirement. The book also uses query columns and query tables described in these articles:

• Introducing DEFINE COLUMN in DAX queries
https://www.sqlbi.com/articles/introducing-define-column-in-dax-queries/

https://www.sqlbi.com/articles/introducing-define-column-in-dax-queries/

4 CHAPTER 1 Introduction S01.M01

• Introducing DEFINE TABLE in DAX queries
https://www.sqlbi.com/articles/introducing-define-table-in-dax-queries/

• The SQL language. The modules about DirectQuery use quite some SQL code. You do not need
to master all the details about SQL. Still, you must be able to read and understand SQL code
quickly and how indexes, column stores, and other relational database technologies may affect
your query’s results and performance. We use Microsoft SQL Server in the book examples. You
can apply the same concepts to other relational databases – even though you cannot use the same
specific techniques described for Microsoft SQL Server.

• The Tabular architecture. Tabular is a complex engine that includes different technologies. We
will use but do not explain many features of Tabular. Even though you can read and learn most of
the content of this book without a deep understanding of the Tabular engine, we strongly suggest
our students attend the Mastering Tabular video course first. Unfortunately, we do not have a
corresponding book for that content.

• DAX Studio. DAX Studio is the primary tool used throughout the entire training. We introduce
some basic concepts about DAX Studio but do not go in-depth on all the tool features. If you are
unfamiliar with DAX Studio, we suggest you attend the free DAX Tools training first at
https://www.sqlbi.com/p/dax-tools-video-course/.

Overview of the Tabular architecture

The architecture of a modern Tabular solution can be rather complex. To perform any optimization, we
must understand many technical details about a Tabular solution. Indeed, when there are performance
issues, users typically report that “the dashboard is slow” or “it takes too long to produce the report”.
However, the report is only the tip of the iceberg of a performance issue hidden in any place of the
architecture.

The following figure shows a very high-level overview of what happens when rendering a report:

https://www.sqlbi.com/articles/introducing-define-table-in-dax-queries/
https://www.sqlbi.com/p/dax-tools-video-course/

CHAPTER 1 Introduction S01.M01 5

The report sends a query to the Tabular model, which runs the query and might need to access an SQL

database if the model uses DirectQuery, scan a VertiPaq storage if the model is in import mode, or connect
to another Tabular model if we are using a composite model. Worse, it might be a mix of all these
technologies together in a complex model.

The optimization techniques to use strongly depend on the architecture. We might face a simple DAX
issue: poor code leads to bad performance. However, the same DAX code might work well with VertiPaq,
and it might be a severe issue in a composite model. It might be the case that the code itself works fine,
but the amount of materialization is excessive because the model uses DirectQuery.

In other words, providing guidelines about authoring good DAX code and building a performant
model is nearly impossible unless we clearly understand all the pieces connected in a Tabular model.

Structure of the training

The book has five sections:

• Section 1: Core concepts. This introductory section starts with some optimization examples
to provide an overview of the steps needed to optimize DAX code or Tabular models. Then,
it covers the main topics about the Tabular architecture, includes information about the tools
to use, and introduces the query plan concept.

• Section 2: The formula engine. This section is no longer an introduction. We go as deep as
possible into the details of the formula engine, discover its operators, understand the
datacaches, read the query plan, and then start optimizing code.

• Section 3: VertiPaq. Time for the main course. VertiPaq is the most critical section. We dive
into the details of the VertiPaq engine through seven dense chapters packed with technical

6 CHAPTER 1 Introduction S01.M01

information. The number of scenarios we optimize increases significantly, along with our
knowledge.

• Section 4: DirectQuery over SQL. This section explores all the details about the DirectQuery
over SQL storage engine. Please do not skip the previous sections of the book; they are
required to understand how DirectQuery works.

• Section 5: Composite models. Composite models are a recent architectural addition to
Tabular, and they prove to be more challenging because they share all the complexity of
VertiPaq and DirectQuery.

A first read of the book from cover to cover reveals a long journey in DAX optimizations. Once you
finish the book, you can use it as a reference to refresh your mind about specific topics.

We advise readers not to jump directly to the more advanced sessions until they are familiar with the
previous topics. We build knowledge in steps and never repeat a topic multiple times. If you fast-forward
to an advanced chapter, it is unlikely you will be able to appreciate several of the nuances.

CHAPTER 1 Introduction S01.M01 7

Coding conventions

The book has many code samples in three languages: DAX, SQL, and xmSQL. You will learn xmSQL in this
book, whereas you should already know DAX and SQL. Every language has a different style for code
snippets that we present here to familiarize ourselves with.

Here is a sample code in DAX:

EVALUATE
SUMMARIZECOLUMNS (

 ROLLUPADDISSUBTOTAL (
 'Date'[Year],
"IsGrandTotalRowTotal",
ROLLUPGROUP ('Date'[Month], 'Date'[Month Number]),
"IsDM1Total"

),
 "Sales_Amount", 'Sales'[Sales Amount]
)

The following is SQL:

SELECT TOP (1000001) *
FROM (
 SELECT [t1_Year], SUM([a0]) AS [a0]
 FROM (

SELECT [t1].[Year] AS [t1_Year],
([t3].[Quantity] * [t3].[Net Price]) AS [a0]

FROM (
[Data].[Sales] AS [t3]

LEFT JOIN [dbo].[Date] AS [t1] ON ([t3].[Order Date] = [t1].[Date])
)

) AS [t0]
 GROUP BY [t1_Year]
) AS [MainTable]
WHERE (NOT (([a0] IS NULL)))

And the last example is xmSQL:

WITH
 $Expr0 := (PFCAST ('Sales'[Quantity] AS INT) * PFCAST ('Sales'[Net Price] AS INT))

SELECT
 'Product'[Brand],
 SUM (@$Expr0)

FROM 'Sales'
 LEFT OUTER JOIN 'Product'

 ON 'Sales'[ProductKey]='Product'[ProductKey];

8 CHAPTER 1 Introduction S01.M01

Companion content

All the examples included in the book can be downloaded and reproduced on your computer. You might
see different absolute results because of differences in CPU, RAM, and software versions. However, most
of the time, you will see the same relative differences between different optimization steps. Keep in mind
the different baselines between your computers and ours. Because we used different hardware in different
parts of the book, you will always find a reference to the CPU used in the initial comments of the DAX
queries you can download.

You can download all the files following the link to Companion content on the
https://sql.bi/optdaxdemo page.

In the following sections, we provide software and hardware prerequisites to use the demo files, how
to download them, and how to find the demo files corresponding to each book chapter.

Software prerequisites
You should have the following software to practice using the book demos. If you want to know more
about the optional tools, you can find more information in the Mastering Tabular video course from SQLBI
at https://www.sqlbi.com/p/mastering-tabular-video-course/.

• Power BI Desktop
https://powerbi.microsoft.com/downloads/

• DAX Studio
https://daxstudio.org/

• Excel (optional)
https://www.microsoft.com/microsoft-365/excel

• SQL Server 2022 (optional)
https://www.microsoft.com/sql-server/

• SQL Server 2022 latest cumulative updates (optional)
https://www.microsoft.com/en-us/download/details.aspx?id=105013

• SQL Server Analysis Services Tabular (optional)
https://learn.microsoft.com/analysis-services/tabular-models/tabular-models-ssas

• SQL Server Management Studio (optional)
https://learn.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms

• Tabular Editor 2 or 3 (optional)
https://www.tabulareditor.com/

https://sql.bi/optdaxdemo
https://www.sqlbi.com/p/mastering-tabular-video-course/
https://powerbi.microsoft.com/downloads/
https://daxstudio.org/
https://www.microsoft.com/microsoft-365/excel
https://www.microsoft.com/sql-server/
https://www.microsoft.com/en-us/download/details.aspx?id=105013
https://learn.microsoft.com/analysis-services/tabular-models/tabular-models-ssas
https://learn.microsoft.com/sql/ssms/download-sql-server-management-studio-ssms
https://www.tabulareditor.com/

CHAPTER 1 Introduction S01.M01 9

Hardware prerequisites
To practice the demos with the largest PBIX demo file (Contoso 100M.pbix, 2GB), you need a computer
with at least 16GB of RAM. If you do not have enough RAM, you can use the smaller Contoso 10M.pbix,
which should run on any computer running Power BI Desktop, even though the metrics obtained can be
significantly different from the ones shown in the book.

If you want to create the largest database for Analysis Services (Contoso 100M x 10), we suggest a
computer with at least 64GB of RAM. This model is used in a few demos: you do not need to repeat those
same demos, as you can see similar effects on smaller models, even though the results will be at a different
order of magnitude.

Download demos
The demos are files we use in the book to illustrate how to measure performance and optimize code. You
need Power BI Desktop and DAX Studio to repeat the same demos on your PC. For a few demos that
require very large databases, you need SQL Server and Analysis Services: if you do not have enough RAM
to install those databases, repeat the demos on the smaller Power BI Desktop files.

To practice the concepts learned, we suggest looking for patterns you have seen in each section by
repeating the same analyses with the sample demo files provided and then on your models.

All the Contoso sample databases have the same structure; the only difference is their size. For
example, Contoso 10K contains around 10,000 orders, while Contoso 1M contains around 1 million orders.
Most of the demos run on Contoso 100M, and few run on a larger or smaller Contoso database: you find
the reference to the Contoso version in the comments at the beginning of each DAX demo file.

The PBIX files contain the sample database for Power BI Desktop. You do not need to refresh these
databases. Still, if you want, you should download the SQL Server backup (.bak files), restore them with
the same database name (without the .bak extension) on a local SQL Server database, and create an alias
named Demo that points to the SQL Server instance where you restored the bak files. Read the Creating
database aliases on SQL Server 2022 article to create the Demo aliases on both 32-bit and 64-bit
configurations of SQL Server: https://sql.bi/creating-aliases/.

The Optimizing DAX - Demo files.ZIP archive contains all the files used in the demos of the book.
Download the file and unzip the content in a local folder on your computer. Most of the demos run on a
Contoso sample database; only a limited number of demos have separated PBIX files that you find in the
same module folder of the demo files.

The BAK files are SQL Server backups you can restore on SQL Server 2019 or 2022 to refresh the PBIX
file and/or to populate corresponding Analysis Services databases. Read the Creating database aliases on
SQL Server 2022 article to create the Demo aliases on both 32-bit and 64-bit configurations of SQL Server:
https://sql.bi/creating-aliases/. The Contoso 100M.bak file is stored in two files, Contoso 100M.7z.001 and
Contoso100M.7z.002: you can extract the Contoso 100M.bak using 7-Zip (https://www.7-zip.org/).

The AS BIM - Contoso 100M X 10.ZIP archive contains the Tabular project (BIM file) to generate the

https://sql.bi/creating-aliases/
https://sql.bi/creating-aliases/
https://www.7-zip.org/

10 Introduction S01.M01

Analysis Services database "Contoso 100M x 10" used with the demos with the largest database. You need
a large server with at least 64GB of RAM to process this database. However, you can use the Contoso
100M PBIX file to run the same demos executed on "Contoso 100M x 10" (see the reference database in
the comments of the DAX code): you will see similar effects at a smaller order of magnitude.

Sample code references
At the beginning of each book chapter, there is a reference to the sample code. This reference is the
corresponding section and module of the Optimizing DAX video course on SQLBI. For example, SAMPLE
S02.M03 means that the sample code for the chapter is in the folder starting with "S02.M03" within the
Demo folder. Such a reference also corresponds to Section 02 and Module 03 of the video course.

CHAPTER 2 Introducing optimization with examples S01.M02 11

C H A P T E R 2 SAMPLE S01.M02

Introducing optimization with
examples

The amount of knowledge required to optimize any measure is massive. The architecture of Tabular is
rather complex, and we will dive into extremely technical details to appreciate the effect of any change.

It is easy to lose sight of the overall reason why certain specifics are important when diving into details.
Therefore, if we were to follow an academic approach, and explain all the details before starting to use
the concepts, the training would be extremely hard to follow, somewhat boring, and you would have to
constantly go back to previous chapters to refresh your memory about topics that did not seem relevant
the first time around.

We chose a different approach. This first set of introductory content shows the complete process of
optimization through examples. We neither explain each step in full nor do we explain why we perform
certain actions. The goal of this first set of optimizations is not that of learning how to optimize. Instead,
we want to show the reasoning required to perform optimizations in different architectures.

Do not consider these first optimizations as best practices, and do not try to derive complete
knowledge from these examples. These are just simple examples to show the overall process. Later on,
we shall start to dive into the details. Then, hopefully, having seen the complete process will help you
focus on the details without losing sight of the big picture.

During the process of optimizing the code, we also use several tools. Again, we do not provide a
complete reference of those tools, because the goal is to show you when the tools are used rather than
explain how to use them. We provide a much greater level of detail in the following chapters. In the entire
description, we are deliberately concise. If the description seems cloudy to you, this is to be expected. Our
promise is that you will be able to perform the same operations once you complete the training and have
some more experience under your belt.

Optimizing DAX

We start by analyzing a simple measure that contains a DAX issue. The code is poorly written, and in the
process of trying to optimize it, we will also make it worse before finally reaching the optimized version.
The example is not relevant, despite being quite common. The critical detail to focus on is the entire
optimization process.

It all starts with a report that users describe as slow. It contains a simple measure that computes sales
for only transactions whose amount is greater than 200.00 USD.

12 CHAPTER 2 Introducing optimization with examples S01.M02

The code of the measure is the following:

-- Measure in Sales table

Sales Gt 200 =
SUMX (

 Sales,
 IF (

 Sales[Quantity] * Sales[Net Price] >= 200,
Sales[Quantity] * Sales[Net Price]

)
)

If you are a seasoned DAX developer, you know where the problem is right off the bat. Nonetheless,
in this section we work on the full performance analysis of the measure.

The report is on a Power BI Desktop file, using Import mode. The Sales table contains 200M rows,
spanning around 10 years of data. We use the Performance Analyzer tool in Power BI Desktop to retrieve
the DAX query executed for the visual. Before analyzing the query, Performance Analyzer already provides
us with some rather interesting numbers: the query took 1.2 seconds to run on a quite powerful server
with 64 virtual cores.

CHAPTER 2 Introducing optimization with examples S01.M02 13

The code of the query is verbose, because it is automatically generated by Power BI:

// DAX Query
DEFINE

 VAR __DM3FilterTable =
TREATAS ({ 2010 }, 'Date'[Year])

 VAR __DS0Core =
SUMMARIZECOLUMNS (

 ROLLUPADDISSUBTOTAL (
 'Date'[Year],
"IsGrandTotalRowTotal",
ROLLUPGROUP ('Date'[Month], 'Date'[Month Number]),
"IsDM1Total",
NONVISUAL (__DM3FilterTable)

),
"Sales_Gt_200", 'Sales'[Sales Gt 200]

)
 VAR __DS0PrimaryWindowed =

TOPN (
 502,
__DS0Core,
[IsGrandTotalRowTotal], 0,
'Date'[Year], 1,
[IsDM1Total], 0,
 'Date'[Month Number], 1,
'Date'[Month], 1

)

EVALUATE
__DS0PrimaryWindowed
ORDER BY

 [IsGrandTotalRowTotal] DESC,
 'Date'[Year],
 [IsDM1Total] DESC,
 'Date'[Month Number],
 'Date'[Month]

We want to simplify the query, to make it easier to understand. In the process of simplifying the query,

14 CHAPTER 2 Introducing optimization with examples S01.M02

we need to pay attention not to get rid of the problem. The first thing to do is to execute the query in
DAX Studio with Server Timings enabled to obtain the first baseline. Later on, we will check that the
simplified query did not change the timings in such a way that the issue seems resolved. Here is the DAX
Studio timings report.

Then, we simplify the query by removing the TOPN function, the final sorting, and other lines to make
it shorter. We also add the definition of the measure, so we can change it later. Here is the shorter version
we are going to work with:

DEFINE
 MEASURE Sales[Sales Gt 200] =

SUMX (
 Sales,
IF (

 Sales[Quantity] * Sales[Net Price] >= 200,
Sales[Quantity] * Sales[Net Price]

)
)

EVALUATE
SUMMARIZECOLUMNS (

 ROLLUPADDISSUBTOTAL (
 'Date'[Year],
"IsGrandTotalRowTotal",
ROLLUPGROUP ('Date'[Month], 'Date'[Month Number]),
"IsDM1Total"

),
 "Sales_Gt_200", 'Sales'[Sales Gt 200]
)

The timings of this query are close to those of the previous one.

CHAPTER 2 Introducing optimization with examples S01.M02 15

Since the numbers are similar, we know that the problem is still there and we can start the optimization
process. Despite the size of the Sales table being relatively large (200M is not huge, but it already is a
significant number), the time required to compute the result seems excessive. The degree of parallelism
is exceptional (on 64 cores, we obtained x51.0). Though the entire execution time is reported as storage
engine CPU, we can clearly see a CallbackDataID, indicating that the formula engine is required to kick in
to compute expressions that cannot be pushed down to the storage engine.

We know that a CallbackDataID is often a source of performance issues. It is nearly impossible to
remove all CallbackDataIDs from a query, but we can remove it in this situation. The problem is the IF
statement inside the iteration carried on by SUMX, because the VertiPaq storage engine does not support
conditional logic. We must rephrase the measure to avoid the IF statement; we replace it with a condition
set by CALCULATE to rely on filtering rather than IF. A first (wrong) attempt in this direction is the
following:

DEFINE
 MEASURE Sales[Sales Gt 200] =

CALCULATE (
 SUMX (Sales, Sales[Quantity] * Sales[Net Price]),
FILTER (Sales, Sales[Quantity] * Sales[Net Price] >= 200)

)

EVALUATE
SUMMARIZECOLUMNS (

 ROLLUPADDISSUBTOTAL (
 'Date'[Year],
"IsGrandTotalRowTotal",
ROLLUPGROUP ('Date'[Month], 'Date'[Month Number]),
"IsDM1Total"

),
 "Sales_Gt_200", 'Sales'[Sales Gt 200]
)

The idea is to remove the requirement to compute IF by replacing it with a table filter computed by
FILTER and applied by CALCULATE. It turns out to be an awful idea: the server timings are much worse

16 CHAPTER 2 Introducing optimization with examples S01.M02

than before.

The storage engine CPU is a bit lower than the previous version of the measure, but the degree of
parallelism is much lower this time (x6.0). Moreover, the formula engine executes a significant portion of
code, making the overall performance much worse than the previous one. Overall, the execution time
went from 1.5 to 23 seconds.

A deeper analysis of the xmSQL queries shows that the storage engine is not actually computing the
result. Although we have removed the CallbackDataID and replaced it with an xmSQL filter, the VertiPaq
engine retrieves way too much data. The following is the first xmSQL query in the previous screenshot:

WITH
 $Expr0 := (PFCAST ('Sales'[Quantity] AS INT) * PFCAST ('Sales'[Net Price] AS INT))

SELECT
 'Sales'[Quantity],
 'Sales'[Net Price],
 'Date'[Year],
 'Date'[Month],
 'Date'[Month Number],
 SUM (@$Expr0)

FROM 'Sales'
 LEFT OUTER JOIN 'Date'

 ON 'Sales'[Order Date]='Date'[Date]
WHERE

 (COALESCE ((PFCAST ('Sales'[Quantity] AS INT) * PFCAST ('Sales'[Net Price] AS INT))) >= COALESCE (2000000)) ;

Even though the query groups by Date[Year], Date[Year Month] (and Date[Year Month Number]
because of the sort-by-column property), the xmSQL query also groups by Sales[Quantity] and Sales[Net

CHAPTER 2 Introducing optimization with examples S01.M02 17

Price]. The reduced degree of parallelism is mainly due to the large size of the datacaches returned by the
storage engine to the formula engine. Moreover, the formula engine must carry out the calculation
because the VertiPaq result in the datacache does not contain the result. Hence the exaggerated time
required from the formula engine. The problem is the large datacache size, resulting in extreme
materialization. The technique in itself is smart. The problem is the way we expressed the query.

Indeed, we used a filter over Sales as a filter argument in CALCULATE. A table filter is a very bad practice
that newbies oftentimes use. A seasoned DAX developer knows that a filter in CALCULATE should work
on the minimum number of columns required to obtain its effect. The filter over Sales in CALCULATE is
for sure the issue in this measure. Therefore, we move forward and replace it with a filter over the only
two columns required to apply their effect, which are Sales[Quantity] and Sales[Net Price]:

DEFINE
 MEASURE Sales[Sales Gt 200] =

CALCULATE (
 SUMX (Sales, Sales[Quantity] * Sales[Net Price]),
FILTER (

 ALL (Sales[Quantity], Sales[Net Price]),
 Sales[Quantity] * Sales[Net Price] >= 200

)
)

EVALUATE
SUMMARIZECOLUMNS (

 ROLLUPADDISSUBTOTAL (
 'Date'[Year],
"IsGrandTotalRowTotal",
ROLLUPGROUP ('Date'[Month], 'Date'[Month Number]),
"IsDM1Total"

),
 "Sales_Gt_200", 'Sales'[Sales Gt 200]
)

The result is exactly what we were searching for.

18 CHAPTER 2 Introducing optimization with examples S01.M02

All the indicators are just perfect. The storage engine CPU is massively reduced, the degree of
parallelism is back to being exceptional, there is virtually no formula engine involved in the query and no
CallbackDataIDs anywhere. Materialization is reduced from 5 million rows to only 3,150 rows. Overall, the
execution went from 1.5 seconds to a bit less than 200 hundreds milliseconds – which given the size of
the Sales table, was expected.

Job done; the code is now good enough to go into production and replace the previous measure. In
order to complete our task we had to leverage on our DAX knowledge to rephrase the code, we had to
discover what is being computed by the formula engine and the storage engine, we had to check that the
degree of parallelism was the one expected, and we used the size of the datacaches as an indicator of the
materialization level. We used Performance Analyzer and DAX Studio to obtain our goal. We will learn all
these details. For now, let us move on to the next example.

Optimizing the model

In the previous example, we optimized a piece of DAX code: The goal was to reduce the execution time
of a query. We started from a measure because it is likely to be the most common optimization
requirement. Nonetheless, other types of optimization are equally important. For example, reducing the
size of a model improves both the execution time and the memory usage of a data model.

As in the previous example, we are not interested in providing detailed information about our
considerations to optimize a model. Rather, we want to share the steps of optimizing a model by showing
the reasoning behind a choice. In this example, we must choose between a calculated column and a
calculation at query time.

The Sales table contains two columns – Sales[Quantity] and Sales[Net Price] – used to compute the
sales amount by summing the quantity multiplied by the net price. This calculation is widely used in
reports, along with other columns like Quantity, Net Price, and Unit Cost.

This is the code of the Sales Amount measure:

CHAPTER 2 Introducing optimization with examples S01.M02 19

-- Measure in Sales table

Sales Amount = SUMX (Sales, Sales[Quantity] * Sales[Net Price])

The question is rather simple. Is it better to perform the multiplication at query time – using an iterator
like we are doing in Sales Amount – or is it better to create a calculated column containing the
multiplication result and then sum the calculated column at query time?

Creating a calculated column comes with several consequences:

• The model size grows because the calculated column is stored in RAM;

• The model processing time increases because the calculated column is computed sequentially at
process time.

The price to pay for a calculated column is a larger model that takes more time to process. At the same
time, we expect that computing the value in advance will reduce the execution time of queries. To make
an educated decision, we evaluate the different impacts.

Let us start by creating the calculated column:

-- Calculated column in Sales table

Line Amount (USD) = Sales[Quantity] * Sales[Net Price]

We must evaluate the impact on both process time and size. Before measuring the time required to
compute this calculated column, we note that the column will be used only in DAX calculations: therefore,
we do not need to store its hierarchy. The hierarchy would consume processing time and space in
memory, so we clear the AvailableInMDX property of the column.

Once we have created the column in the model, we process the model, triggering this way the
calculation of only this column. We cannot easily measure the time required to compute only this new
column. Nonetheless, because right after its creation the column is the only unprocessed entity in the
entire model, measuring the default process of the model provides a good approximation of the actual
cost.

Before starting the process default, we open SQL Server Profiler and trace the Progress Report events.
Then, we run a refresh by using the following TMSL script in SQL Server Management Studio:

20 CHAPTER 2 Introducing optimization with examples S01.M02

{
 "refresh": {
 "type": "automatic",
 "objects": [

 {
"database": "Contoso 100M x 10"

 }
]
 }
}

Because we monitor the process and the profiler gathers all progress report events, we should avoid
using the server for anything else until the process finishes. The model is quite large; the Sales table
contains 1.4B rows, so we do not need to measure timings in an extremely precise way.

Once the processing is finished, we can look at the events to discover the time required to compute
the column.

The processing started at 17:18:40 and finished at 17:20:22, meaning that the calculated column took
1 minutes and 42 seconds to compute. It is also worth noting that the server used a single core during
the entire calculation. This is a known limitation of AS, which computes calculated columns sequentially.
The time spent to compute a calculated column cannot be reduced by increasing the number of cores.
Nonetheless, we also know that if the result is good we can compute this column as a calculated column
in the view that feeds the table – so that instead of being a calculated column, the Line Amount column
becomes a regular imported column.

We perform the tests with a calculated column because we do not want to process 1.4B rows every
time we run a test. The results with a calculated column are slightly imprecise, but the time required to
gather them is so tiny that it is worth proceeding this way.

We can now use the VertiPaq Analyzer information to assess the size of the column.

CHAPTER 2 Introducing optimization with examples S01.M02 21

The entire Sales table uses 27GB of RAM, with the Line Amount (USD) column alone using 3.4GB. In
other words, the calculated column alone uses around 14% of the total size of the database. The impact
is quite significant in terms of RAM.

Now that the column is in place, we can measure the benefits – if any – in terms of performance.
Because we are interested in an overall measure, we do not slice by any column and just compute the
sales amount with either the new calculated column or the iteration. We author the following query and
compute first the Calc Column row alone, and then the Measure row, alone again:

EVALUATE
SUMMARIZECOLUMNS (

 "Calc column", SUM (Sales[Line Amount (USD)])
)

Here is the result with the calculated column.

22 CHAPTER 2 Introducing optimization with examples S01.M02

The important number is the SE CPU, which is not dependent on the number of cores. Indeed, we use
a server with a very large number of cores, reaching a very high degree of parallelism. SE CPU is a better
indicator of the raw power consumed to produce the result when evaluating performance.

Next, the result using the measure, therefore performing the multiplication for every row:

EVALUATE
SUMMARIZECOLUMNS (

 "Measure", SUMX (Sales, Sales[Quantity] * Sales[Net Price])
)

As expected, the calculated column is beneficial to performance. The calculated column takes 1,781
milliseconds to aggregate its values, whereas the multiplication at query time produces the same result
using 4,016 milliseconds of SE CPU.

The question is whether the benefit is worth the increase in size. Before making up our mind, we want
to look at further considerations. The test focuses strictly on the Line Amount calculated column.
Nonetheless, we have other calculations following the same pattern: cost and margin. Therefore, we create
two more calculated columns and measures:

CHAPTER 2 Introducing optimization with examples S01.M02 23

-- Calculated column in Sales table

Line Cost (USD) = Sales[Quantity] * Sales[Unit Cost]

-- Calculated column in Sales table

Line Margin (USD) = Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost])

-- Measure in Sales table

Cost Amount = SUMX (Sales, Sales[Quantity] * Sales[Unit Cost])

-- Measure in Sales table

Margin Amount = SUMX (Sales, Sales[Quantity] * (Sales[Net Price] - Sales[Unit Cost]))

Then, we repeat the measurement process in a more complex query that uses the three columns and
measures. First, we run this query to measure the time required to compute the values in the calculated
columns:

EVALUATE
SUMMARIZECOLUMNS (

 "Sales Amount", SUM (Sales[Line Amount (USD)]),
 "Cost Amount", SUM (Sales[Line Cost (USD)]),
 "Margin Amount", SUM (Sales[Line Margin (USD)])
)

The timing is in line with what we expect; the time required to compute three measures is around three
times the time required to compute one measure.

Then, we execute the following query to evaluate the time required to compute the values at query
time:

24 CHAPTER 2 Introducing optimization with examples S01.M02

EVALUATE
SUMMARIZECOLUMNS (

 "Sales Amount", [Sales Amount],
 "Cost Amount", [Cost Amount],
 "Margin Amount", [Margin Amount]
)

This time, the results are worse than expected, because of the larger time in the SE CPU.

Indeed, gathering three columns using calculated columns increased the time required by a factor of
around three. On the other hand, the same results computed by using measures are slower: 16 seconds
against 4 seconds – four times more expensive. The reason is that Line Margin requires multiple columns
in the same expression: Quantity, Net Price, and Unit Cost. Increasing the expression’s complexity makes
the solution with the calculated column preferable.

Nonetheless, we should also evaluate the increase in terms of RAM. Here is the VertiPaq Analyzer
report with the three calculated columns.

CHAPTER 2 Introducing optimization with examples S01.M02 25

The three columns use 9.6GB of RAM, massively increasing the model size.

Though it is undoubtedly true that a calculated column brings good benefits to the model
performance, at the same time, the price in terms of RAM consumption seems excessive. Creating one
calculated column for each calculation would make the model too large.

Here is where a conclusion is hard to make without considering further details. If this were a general-
purpose model, it would not make much sense to consolidate all the possible calculations in calculated
columns, because the price in terms of space used would definitely be too large. On the other hand, if
you have a complex calculation that involves multiple columns and intricate logic, and this calculation is
at the core of most of your reports, then a calculated column to consolidate those results would make
sense.

In the particular case of Contoso, with Sales Amount, Cost Amount, and Margin Amount, it is likely
better to avoid the calculated columns to save memory, thus paying the price of working with slower
queries – even though in smaller models the difference might not measurable.

As you have seen, a simple decision about whether to compute a calculated column or not requires
quite a few considerations and measurements. Besides, just knowing the details of why we made a choice
already has a lot of value. We did not choose randomly. We performed measurements and made decisions
based on solid numbers. If at any point we need to change our mind, we already know the consequences
of making any choice.

26 CHAPTER 2 Introducing optimization with examples S01.M02

Optimizing composite models

The first optimization example we saw in this chapter was related to a simple DAX optimization. For the
sake of simplicity, we used an example using a regular import model, therefore handling only xmSQL
queries to the VertiPaq engine. Nonetheless, it is important to note that optimizing DAX requires a deep
understanding of the entire model architecture.

As an example, we see how the composite model feature affects the process of DAX optimization. We
use as an example the dynamic segmentation pattern. We will experience bad performance: the reason is
not the DAX code, but rather the interaction between the local and remote engines.

This example aims to demonstrate that optimizing DAX requires more than just DAX knowledge. The
same DAX code performs very differently if executed in a regular VertiPaq model, or in a composite model.
In order to optimize DAX for a composite model, you need to have a profound understanding of the
architecture and how the queries are split between the remote and the local servers.

We use a variation of the pattern available at Dynamic segmentation – DAX Patterns
(https://www.daxpatterns.com/dynamic-segmentation/) We implement dynamic clustering on a model
hosted in the Power BI Service by extending it with a composite model. Based on a configuration table,
we want to dynamically cluster the customers by Sales Amount. The following is the configuration table
created in the composite model.

We create a measure using a slightly simplified version of the code published on
www.daxpatterns.com:

https://www.daxpatterns.com/dynamic-segmentation/
https://www.daxpatterns.com/dynamic-segmentation/
http://www.daxpatterns.com/

CHAPTER 2 Introducing optimization with examples S01.M02 27

-- Measure in Sales table

Customer in segment :=
SUMX (

 'Sales Segment',
 VAR MinSale = 'Sales Segment'[MinValue]

 VAR MaxSale = 'Sales Segment'[MaxValue]
 VAR CustInSeg =

FILTER (
 Customer,
VAR CustSales = [Sales Amount]
 RETURN

 CustSales > MinSale && CustSales <= MaxSale
)

 RETURN
 COUNTROWS (CustInSeg)

)

The measure mixes the Sales Segment table stored in the local VertiPaq model with the Customer table
stored in the remote model. It works just fine: you can generate the following report showing the number
of customers in each segment, sliced by year.

Although the numbers are correct, there is a performance issue. The measure would work very well in
a regular VertiPaq model, but it is extremely slow in a composite model. The query that populates the
matrix (somewhat simplified here) is the following:

--
-- Query executed on the local model
--
EVALUATE
SUMMARIZECOLUMNS (

 ROLLUPADDISSUBTOTAL ('Sales Segment'[Segment], "IsGrandTotalRowTotal"),
 ROLLUPADDISSUBTOTAL ('Date'[Year], "IsGrandTotalColumnTotal"),
 "Customer_in_segment", 'Sales Segment'[Customer in segment]
)

Looking at the server timings, we discover that this simple query runs in around three seconds on a
rather small model with a few thousand sales:

28 CHAPTER 2 Introducing optimization with examples S01.M02

Further analysis shows that the complexity is hidden in the storage engine DAX queries sent to the
remote server. If we analyze those queries, we find a first query that is already suspicious:

--
-- DAX DirectQuery query executed on the remote model
--
EVALUATE
SELECTCOLUMNS (

 'Customer',
 "__RN", blank(),
 "'Customer'[CustomerKey]", 'Customer'[CustomerKey],
 "'Customer'[Gender]", 'Customer'[Gender],
 "'Customer'[Name]", 'Customer'[Name],
 "'Customer'[Address]", 'Customer'[Address],
 "'Customer'[City]", 'Customer'[City],
 "'Customer'[State Code]", 'Customer'[State Code],
 "'Customer'[State]", 'Customer'[State],
 "'Customer'[Zip Code]", 'Customer'[Zip Code],
 "'Customer'[Country Code]", 'Customer'[Country Code],
 "'Customer'[Country]", 'Customer'[Country],
 "'Customer'[Continent]", 'Customer'[Continent],
 "'Customer'[Birthday]", 'Customer'[Birthday],
 "'Customer'[Age]", 'Customer'[Age]

)

This query retrieves all the columns of the Customer table. In our example, there are just a few thousand
customers. In a more realistic scenario, you could have millions of customers. Therefore, the query is
simple, but the datacache returned is potentially huge. Besides, it seems like neither the measure nor the
report require any of those columns.

The next two queries are even worse, and they provide an explanation about why the previous query
retrieved the entire Customer table. The first query retrieves the sales amount for each customer and year,
using as a filter the entire customer table. In other words, the customer table that the local DAX engine
has retrieved from the remote model is used as a filter in a subsequent query sent to the remote engine:

--
-- DAX DirectQuery query executed on the remote model

CHAPTER 2 Introducing optimization with examples S01.M02 29

--
DEFINE

 VAR _Var0 =
VALUES ('Date'[Year])

 VAR _Var1 =
SUMMARIZE (

 'Customer',
'Customer'[CustomerKey],
'Customer'[Gender],
'Customer'[Name],
'Customer'[Address],
'Customer'[City],
'Customer'[State Code],
'Customer'[State],
'Customer'[Zip Code],
'Customer'[Country Code],
'Customer'[Country],
'Customer'[Continent],
'Customer'[Birthday],
'Customer'[Age]

)
 VAR _Var2 = {

 (1212508, "Male", "David Puente", "189 Koontz Lane", "Los Angeles", "CA",
"California", "90017", "US", "United States", "North America", DT"1992-1-4", 29),

 (1200226, "Male", "William Gaughan", "4384 Euclid Avenue", "Guadalupe", "CA",
"California", "93434", "US", "United States", "North America", DT"1942-6-26", 78),

 --
 -- Several thousands of rows here, one for each customer
 --
 (1200334, "Male", "Micheal Boyers", "655 Carriage Court", "Los Angeles", "CA",

"California", "90017", "US", "United States", "North America", DT"1989-9-30", 31),
 (1201225, "Male", "John Lally", "3886 Kerry Way", "Irvine", "CA",

"California", "92614", "US", "United States", "North America", DT"1996-2-6", 24),
 (395073, "Male", "Michael Vandermark", "386 Dufferin Street", "Toronto", "ON",

"Ontario", "M6H 4B6", "CA", "Canada", "North America", DT"1983-1-3", 38)
 }

EVALUATE
GROUPCROSSAPPLYTABLE (

 'Date'[Year],
 _Var0,
 _Var1,
 "L1",

GROUPCROSSAPPLY (
 'Customer'[CustomerKey],
'Customer'[Gender],
'Customer'[Name],
 'Customer'[Address],
'Customer'[City],
'Customer'[State Code],
'Customer'[State],
'Customer'[Zip Code],
'Customer'[Country Code],
'Customer'[Country],
'Customer'[Continent],
'Customer'[Birthday],

30 CHAPTER 2 Introducing optimization with examples S01.M02

 'Customer'[Age],
KEEPFILTERS (

 TREATAS (
 _Var2,
'Customer'[CustomerKey],
'Customer'[Gender],
'Customer'[Name],
'Customer'[Address],
'Customer'[City],
'Customer'[State Code],
'Customer'[State],
'Customer'[Zip Code],
'Customer'[Country Code],
'Customer'[Country],
'Customer'[Continent],
'Customer'[Birthday],
'Customer'[Age]

)
),
 "__Agg0", [Sales Amount]

)
)

Not only is this query huge, but so is its resulting data cache. Indeed, the query result is – again – the
entire Customer table along with the Sales Amount result. Therefore, this is a large query with a large
result… Definitely an issue.

A third query is very similar to the previous one, where the only noticeable difference is that the year
is no longer part of the group by section. Still, the query includes the entire Customer table, and the
resulting datacache contains the entire Customer table.

In other words, the entire Customer table is passed back and forth between the local and the remote
servers multiple times. The number of customers in each segment is later computed in the formula engine
based on the data retrieved from the remote server.

Now that the reason why the query is slow is somewhat clear, it is time to fix the problem. One of the
few golden rules of DAX is to never use a table to apply a filter. A filter over a table requires scanning the
entire table. The VertiPaq engine contains several optimizations and patterns that reduce the number of
columns scanned. However, the DirectQuery over AS engine has a reduced set of optimizations. Therefore,
Tabular ends up scanning the entire table, just because this is what we required in the DAX code.

More specifically, the problem is the reference to Customer in the FILTER part of the measure. It turns
out that we do not need to count the rows in the Customer table; it is enough to retrieve only the
Customer[CustomerKey] column to obtain a semantically equivalent measure:

CHAPTER 2 Introducing optimization with examples S01.M02 31

-- Measure in Sales table

Customer in segment =
SUMX (

 'Sales Segment',
 VAR MinSale = 'Sales Segment'[MinValue]

 VAR MaxSale = 'Sales Segment'[MaxValue]
 VAR CustInSeg =

FILTER (
 DISTINCT (Customer[CustomerKey]),
VAR CustSales = [Sales Amount]
 RETURN

 CustSales > MinSale && CustSales <= MaxSale
)

 RETURN
 COUNTROWS (CustInSeg)

)

By operating this small change in the formula, we obtain the very same result, but the DAX queries
sent to the remote engine are much simpler, hence the timings.

The DirectQuery query executed is way simpler than before:

32 CHAPTER 2 Introducing optimization with examples S01.M02

--
-- DAX DirectQuery query executed on the remote model
--
DEFINE

 VAR _Var0 = VALUES ('Date'[Year])
 VAR _Var1 = VALUES ('Customer'[CustomerKey])
 VAR _Var2 = VALUES ('Customer'[CustomerKey])

EVALUATE
GROUPCROSSAPPLYTABLE (

 'Date'[Year],
 _Var0,
 _Var1,
 "L1",

GROUPCROSSAPPLY (
 'Customer'[CustomerKey],
KEEPFILTERS (_Var2),
"__Agg0", [Sales Amount]

)
)

This query retrieves the value of Sales Amount for each customer and year, exactly as the previous
query did. The big difference is that we no longer have the ridiculous filter – instead, we obtain a smaller
query, and the result set contains only the customer key, the year, and the sales amount. Consequently,
the resulting data cache is smaller.

As you have seen, we updated the DAX code specifically for a composite model in this example. A
measure that works just fine on a regular VertiPaq model might show performance issues with a
composite model. A similar scenario applies with DirectQuery models: VertiPaq and a relational database
like SQL Server are very different engines, so the DAX code optimization depends on the storage engine(s)
used.

Conclusions

The goal of this chapter was not to teach any technique. We optimized DAX code, processing, and models
without describing the rationale behind each decision in detail. The important part was to show that
optimizing a Tabular model requires knowing several details and using many different tools. Without
proper knowledge about the internals, it is nearly impossible to produce efficient code. A good DAX
developer should master each of these techniques and tools.

Starting from the next chapters, we go into the details and build the knowledge needed to optimize
your Tabular models. It will take some time before we can put the learning into practice. Even though at
some point you might feel that all the details we provide are not so relevant… Take a deep breath and
continue ingesting knowledge. As soon as we start to optimize, you will see that each detail is helpful.

Get the full book on

https://sql.bi/optdax

https://www.sqlbi.com/books/optimizing-dax-second-edition/

	Contents at a Glance
	Contents
	Introduction
	Prerequisites
	Overview of the Tabular architecture
	Structure of the training
	Coding conventions
	Companion content
	Software prerequisites
	Hardware prerequisites
	Download demos
	Sample code references

	Introducing optimization with examples
	Optimizing DAX
	Optimizing the model
	Optimizing composite models
	Conclusions

	Blank Page

